Дилатационная кардиомиопатия: разнообразие генетических причин и стратегия ДНК-диагностики

Резюме

Дилатационная кардиомиопатия (ДКМП) - заболевание миокарда, имеющее неуклонно прогрессирующее течение и серьезный прогноз для жизни. Большая часть взрослых форм ДКМП наследуется по аутосомно-доминантному типу. В руководстве ESC (2016) по диагностике и лечению острой и хронической сердечной недостаточности указано, что молекулярно-генетическая диагностика рекомендуется в тех генах, для которых доля выявляемых мутаций достаточно велика для проведения рутинной диагностики. Известны более 70 генов, мутации в которых могут приводить к заболеванию, но данные по спектру мутаций и частоте находок в каждом гене сильно разнятся.

Цели настоящей работы - изучение спектра мутаций у российских взрослых пациентов с ДКМП, разработка стратегии ДНК-диагностики и медико-генетического консультирования таких семей.

Материалы и методы. Выполнено клиническое, инструментальное и генетическое обследование 56 неродственных пациентов с неишемической ДКМП, диагностированной в возрасте старше 18 лет. Клинико-инструментальное обследование включало общий осмотр, сбор индивидуального и семейного анамнеза, электрокардиографию, эхокардиографию, мультиспиральную компьютерную томографию, магнитно-резонансную томографию с контрастированием, коронароангиографическое исследование, эндомиокардиальную биопсию. Генетическое исследование включало высокопроизводительное полупроводниковое секвенирование на платформе IonTorrent 81 гена, мутации в которых являются причиной ДКМП.

Результаты и обсуждение. Соотношение полов (М : Ж) в группе пациентов составило 2 : 1, средний возраст установления диагноза - 37,4 года. Cпорадический характер заболевания был установлен у 30% пробандов, более чем у половины больных имелись указания на наследственный характер заболевания, в 30% семейный анамнез был недостоверен. Идентифицировано 16 мутаций у 16 (28%) пробандов. Мутации, выявленные у пациентов с изолированной ДКМП, были сосредоточены в генах MYH7, MyBPC3, TNNT2, SCN5A, LMNA, DES, DSP, TTN. Пациенты с ДКМП - носители мутаций в генах DMD и NEBL также имели проявления миопатии. Все пациенты были заинтересованы в проведении каскадного семейного скрининга и репродуктивном консультировании.

Заключение. Выявление генетической причины ДКМП в семье оптимизирует тактику лечения и позволяет выработать оптимальную репродуктивную стратегию. Двухэтапный протокол ДНК- диагностики при ДКМП имеет оптимальную клинико-экономическую эффективность. Первым этапом предлагается выполнять поиск мутаций в малой таргетной панели генов (MYH7, MyBPC3, TNNT2, SCN5A, LMNA, DES, DSP). В случае выявления мутаций следует проводить каскадный семейный скрининг. В случае отсутствия диагностических находок в малой панели или получения противоречивых результатов каскадного семейного скрининга рекомендуется выполнять полноэкзомное секвенирование.

Ключевые слова:дилатационная кардиомиопатия, хроническая сердечная недостаточность, персонализированная медицина, секвенирование нового поколения, медико-генетическое консультирование

Для цитирования: Заклязьминская Е.В., Букаева А.А., Шестак А.Г., Поляк М.Е., Благова О.В., Мершина Е.А., Котлукова Н.П., Фролова Ю.В., Дземешкевич С.Л. Дилатационная кардиомиопатия: разнообразие генетических причин и стратегия ДНК- диагностики // Клин. и эксперимент. хир. Журн. им. акад. Б.В. Петровского. 2019. Т. 7, No 3. С. 44-53. doi: 10.24411/2308- 1198-2019-13005

Статья поступила в редакцию 01.06.2019. Принята в печать 25.07.2019.

Дилатационная кардиомиопатия (ДКМП) занимает важное место в структуре причин хронической недостаточности и внезапной сердечной смерти. По актуальным оценкам, рас- пространенность ДКМП в общей популяции может достигать 1:250 - это практически на порядок выше, чем считалось ранее [1]. Это заболевание является ведущей причиной неуклонно прогрессирующей хронической сердечной недостаточности. Несмотря на постоянное совершенствование подходов и методов лечения, прогноз течения ДКМП остается неблагоприятным, а выживаемость после постановки диагноза - низкой (около 30-50% в течение 5 лет) [2]. Развитие хирургических методов лечения (имплантация кардиовертера-дефибриллятора и ресинхронизирующих систем, искусственных желудочков сердца, операции обратного ремоделирования, трансплантации сердца) в сочетании с медикаментозной терапией позволили улучшить прогноз таким пациентам, однако для их своевременного и эффективного использования необходима тщательная этиологическая диагностика.

В развитии неишемической ДКМП принимают участие первичные (генетические) изменения, а также многочисленные внешние факторы риска (инфекционные, токсические, системные заболевания), и выявление каждой группы факторов имеет значение для таргетной терапии. На долю генетических причин приходится не менее 30-50% случаев ДКМП, среди установленных семейных форм выявляемость мутаций достигает 40-50%, а в общей группе больных с ДКМП составляет около 20% [3-5]. Генетическая гетерогенность этого заболевания чрезвычайно велика. К настоящему моменту известно более 70 генов, ассоциированных с развитием ДКМП, и этот список имеет тенденцию к увеличению по мере все более широкого вовлечения в кардиологические исследования массового параллельного секвенирования (NGS) [6]. В руководстве ESC (2016) по диагностике и лечению острой и хронической сердечной недостаточности указано, что молекулярно-генетическая диагностика рекомендуется в тех генах, для которых доля выявляемых мутаций достаточно велика для проведения рутинной диагностики [4]. Однако данные по спектру мутаций в разных генах, частотам разных генетических форм в различных популяциях носят противоречивый характер. Вклад мутаций в большинстве известных генов в общую структуру заболевания не превышает 5%, для большинства генов не описано стабильной корреляции с конкретным клиническим фенотипом. Кроме того, генетические находки в тех же генах могут отвечать и за развитие других форм кардиомиопатий (гипертрофической кардиомиопатии, синдрома некомпактного миокарда левого желудочка, аритмогенной правожелудочковой кардиомиопатии). Эти данные также свидетельствуют в пользу гипотезы "общего пути" (final common pathway), согласно которой ДКМП является конечной точкой прогрессирования любой кардиомиопатии [7, 8]. Однако большинство исследований, доступных на данный момент, не могут в полной мере способствовать подтверждению этой теории, поскольку включают только состояние пациента на момент "здесь и сейчас" и не охватывают сколько-нибудь значимого периода динамического наблюдения.

В руководстве ESC (2016) также отражены рекомендации по ведению пациентов с разными генетическими формами заболевания, в том числе даны уточняющие показания к хирургическим вмешательствам для конкретных генетических форм, например, вызванных мутациями в генах LMNA, DES, PLN, TTN [4]. Учитывая аутосомно-доминантный характер наследования большинства взрослых форм ДКМП и тяжесть прогноза, для семей с выявленными мутациями большую важность представляет возможность использования пренатальной и доимплантационной ДНК-диагностики, других современных репродуктивных технологий. Однако, чтобы диагностировать эти генетические формы, нужна стратегия поиска мутаций, сочетающая диагностическую и экономическую эффективность, что особенно актуально в условиях, когда ДНК- диагностика этого частого и неуклонно прогрессирующего заболевания не введена в стандарты страховой медицины.

Цели настоящей работы - изучение спектра мутаций у российских взрослых пациентов с ДКМП, разработка стратегии ДНК-диагностики и медико- генетического консультирования таких семей.

Материал и методы

Выборка пациентов. В обследованную группу вошли 56 неродственных пациентов с синдромом ДКМП, диагностированным в возрасте старше 18 лет, у которых на этапе первичного обследования не выявлено значимой патологии коронарных сосудов, а также были исключены явные внешние факторы развития дисфункции миокарда. Клинико-инструментальное обследование включало общий осмотр, сбор индивидуального и семейного анамнеза, электрокардиографию, эхокардиографию (ЭхоКГ), мультиспиральную компьютерную томографию, магнитно-резонансную томографию с контрастированием,  коронароангиографическое исследование, эндомиокардиальную биопсию. Диагноз ДКМП ставили на основании следующих ЭхоКГ-критериев: конечно-диастолический размер левого желудочка (ЛЖ) >56 мм в апикальной 4-камерной позиции и >36 мм в парастернальной позиции по длинной оси ЛЖ; фракция выброса (ФВ) <45% [9, 10]. Все пациенты дали добровольное письменное информированное согласие на генетическое исследование. Работа проведена согласно положениям Хельсинской декларации, с одобрением локального этического комитета.

Генетическое исследование. Образцы ДНК пациентов выделяли из образцов венозной крови с применением стандартных протоколов. Поиск генетических вариантов осуществляли путем высокопроизводительного полупроводникового секвенирования на платформе IonTorrent (Thermo Fisher Scientific). Для исследования была разработана панель олигопраймеров Ampliseq, фланкирующих кодирующие и прилегающие интронные области 81 гена, ассоциированного с фенотипом ДКМП, согласно международным литературным данным. В панель вошли следующие гены: MYBPC3, TAZ, TPM1, LDB3, MYL2, ACTC1, MYL3, MYH7, TNNI3, TNNT2, LMNA, CTNNA3, LDB3, CRYAB, PKP2, TGFB3, JUP, DSG2, DSC2, DES, TMEM43, SCN5A, DSP, PLN, FLNC, EMD, TTN, NEXN, PSEN2, NOTCH2, ACTN2, VCL, MYPN, NEBL, BAG3, RBM20, ANKRD1, CSRP3, ILK, TMPO, ABCC9, SGCG, MYH6, PSEN1, SMAD6, FOXC2, TCAP, SGCA, DTNA, MIB1, GATA6, FHOD3, CALR3, MYLK2, JPH2, GATA5, SNTA1, TNNC1, CAV3, DLG1, MYOZ2, PDLIM3, SGCB, NKX2-5, SGCD, SDHA, LAMA4, FOXC1, PRKAG2, HSPB1, SGCE, GATAD1, GATA4, CAVIN4, NOTCH1, FKTN, LAMP2, FLNA, DMD, FHL1, EYA4. Суммарный размер секвенируемых фрагментов составил 494,18 т.п.о. Участки, не покрываемые панелью праймеров Ampliseq, исследовали прямым двунаправленным секвенированием по методу Сенгера.

В тех случаях, когда имелись основания рассматривать ДКМП как часть наследственной синдромальной патологии с известным генетическим спектром, пациентам выполняли таргетное секвенирование гена (генов), связанных с соответствующим синдромом, капиллярным секвенированием по Сенгеру (пациенту с синдромом Альпорта вы- полнили также секвенирование кодирующей последовательности гена COL5A).

Биоинформатический анализ. Данные секвенирования обрабатывали с помощью пакета программного обеспечения Torrent Suite Software (версия 5.0.5), сервиса аннотации генетических вариантов Ion Reporter (Thermo Fisher Scientific) и визуализатора Integrative Genomic Viewer. Находки, имеющие потенциальное клиническое значение, валидировали прямым двунаправленным секвенированием по методу Сенгера.

Оценка патогенности генетических вариантов проводилась с использованием данных из баз популяционных частот (ExAC, gnomAD, 1000 Genomes), онлайн-предикторов SIFT, PolyPhen2, MutationTester и др., предикторов влияния на сплайсинг UMDHSFv3.0 и NetGene2. По итогам анализа вариантам присваивали класс патогенности на основании критериев, изложенных в руководстве Российского общества медицинских генетиков от 2017 г. по интерпретации данных массового параллельного секвенирования [11]. В заключение по результатам исследования выносили варианты V (патогенный) и IV (вероятно патогенный) классов патогенности.

Результаты и обсуждение

За время исследования были получены, систематизированы и обобщены клинико-анамнестические и генетические данные 56 неродственных пациентов с ДКМП, манифестировавшей во взрослом возрасте, сердечной недостаточностью (II-IV класс по NYHA) на момент первого обращения.

Соотношение полов (М : Ж) в группе пациентов составило 38 : 18, что, в целом, соответствует общепринятому представлению о более частой (2 : 1) манифестации ДКМП у мужчин [6]. Средний возраст установления диагноза составил 37,4 года (95% доверительный интервал от 34,7 до 40,1 лет).

У 17 (30%) пациентов был установлен спорадический характер заболевания. Для 12 (22%) пробандов были получены явные доказательства семейного характера ДКМП (медицинская документация, подтверждающая диагноз у кровных родственников). Еще 10 пробандов отмечали отягощенный семейный анамнез по кардиомиопатиям, но не имели возможности представить подтверждающей медицинской документации. Таким образом, более чем у половины больных имелись указания на наследственный характер заболевания, что соответствует наблюдениям о доле семейных форм в других странах [4, 5]. От остальных 17 (30%) обследованных не удалось получить достоверных анамнестических данных для однозначного вывода о наследственном или спорадическом возникновении ДКМП (рис. 1).

Сочетание ДКМП с проявлениями нервно-мышечного заболевания было диагностировано у 4 (7%) больных. ДКМП в рамках наследственного синдрома была выявлена в 1 (1,7%) случае: у одного пациента (М, 24 года) был диагностирован синдром Альпорта с проявлениями как сердечной недостаточности вследствие прогрессирующей ДКМП, так и почечной недостаточности.

Всем больным проведено медико-генетическое консультирование. В результате ДНК-диагностики было выявлено 5 патогенных и 11 вероятно патогенных генетических вариантов в 16 неродственных семьях (табл. 1). Таким образом, нам удалось подтвердить генетическую природу заболевания и выявить генетические варианты IV и V классов патогенности у 28% взрослых пациентов с ДКМП. Для 2 мутаций было подтверждено происхождение de novo. Выявляемость мутаций в нашей группе оказалась сопоставима с данными, опубликованными в европейских исследованиях.

Хотя делать заключение о спектре мутаций у российских больных на пилотной группе в 56 больных затруднительно, нельзя не отметить его своеобразия. Все находки, классифицированные как варианты IV и V классов патогенности, оказались сосредоточены в 11 генах. Наиболее частыми были находки в генах LMNA и TNNT2 (по 3 патогенных генетических варианта). Интересен тот факт, что все варианты, обнаруженные в гене TNNT2, находятся в 173-м положении белка тропонина Т (табл. 1). В 2 из 3 семей с выявленными мутациями в гене TNNT2 был достоверно установлен семейный характер заболевания. В ранее опубликованных зарубежных исследованиях сообщалось, что 173-й кодон TnT является "горячей точкой" при семейных формах ДКМП [4]. Данные, полученные в настоящей работе, позволяют заключить, что эта оценка справедлива и для российских больных.

Примечательно, что в семье с мутацией p.R173L в гене TNNT2 манифестация заболевания у сестры пробанда была связана с беременностью и первоначально интерпретировалась как перипартальная кардиомиопатия, потребовавшая трансплантации сердца (рис. 2). Мутации в гене TNNT2 ранее уже выявлялись у женщин с кардиомиопатией, связанной с беременностью [12, 13], что позволило рассматривать ДКМП, связанную с беременностью, как вариант манифестации семейной ДКМП. На момент ДНК-диагностики у пробанда (Ж, 28 лет) не было клинических проявлений сердечной недостаточности, ФВ ЛЖ была несколько снижена, но не достигала диагностических значений (48-50%). Главным запросом в этой семье была помощь в рождении здорового ребенка. Наличие риска декомпенсации стабильной гемодинамической ситуации у пробанда - носительницы мутации p.R173L в гене TNNT2 в результате беременности и воспроизведение угрожающего клинического сценария сестры - носительницы того же генетического варианта мы оцениваем как высокий. К сожалению, никаких рекомендаций по ведению беременности у женщин с такими мутациями, а также информации об эффективности профилактики и лечения перипартальной КМП бромкриптином при наличии генетически скомпрометированного миокарда нет. Однако своевременная ДНК-диагностика в этой семье, пришедшаяся на активный репродуктивный период пробанда, своевременное выявление мутации, являющейся причиной заболевания, позволило использовать все имеющиеся вспомогательные репродуктивные технологии для рождения здорового ребенка: пресимптоматическую ДНК-диагностику, доимплантационную диагностику и суррогатное материнство.

Результаты ДНК-диагностики имеют значение не только для репродуктивного консультирования, но и для определения ближайшего и отдаленного прогноза здоровья, а также для выбора тактики лечения. Одной из форм ДКМП, для которой в руководствах прописаны особые подходы к оценке риска, является LMNA-ассоциированная ДКМП, которая связана с худшим прогнозом [6]. В нашей группе больных мутации в этом гене были одной из самых частых находок. Известно, что не только мутантный ген, но и тип мутации имеет значение для оценки риска. В Руководстве ESC (2015) по лечению больных с желудочковыми аритмиями и профилактике внезапной смерти прямо указывается, что не-миссенс-мутации в этом гене несут больший риск жизнеугрожающих событий и должны учитываться при решении вопроса об имплантации кардиовертера-дефибриллятора. Однако правильная интерпретация при кажущейся простоте не всегда очевидна. Например, мутация p.Met1Ile в гене LMNA, выявленная в рамках настоящего исследования в семье DCM125, при записи в стандартной номенклатуре формально выглядит как миссенс-мутация (рис. 3А). Однако, поскольку она затрагивает стартовый кодон трансляции, ее функциональный эффект выражается в нарушении сплайсинга, и она должна рассматриваться как вариант, нарушающий корректный сплайсинг белка. Кроме того, носительство мутаций в гене LMNA должно учитываться и на доклинических стадиях заболевания. В семье DCM125 одним из носителей мутации, выявленных в рамках каскадного скрининга, был клинически здоровый мальчик 1,5 лет, сын пробанда (рис. 3Б). Носителям мутаций рекомендуется кардиологическое обследование 1 раз в год [6, 14, 15]. Кроме того, регулярные спортивные нагрузки для него не рекомендованы, так как было показано, что у носителей мутаций в генах LMNA и DES, занимающихся спортом на доклинической стадии развития заболевания, хроническая сердечная недостаточность развивается раньше и быстрее прогрессирует [16].

Рис. 3. Мутация p.Met1Ile в гене LMNA А. Фрагмент прямого секвенирования экзона 1 гена LMNA. Мутация в гетерозиготном состоянии указана стрелкой. Б. Родословная семьи DCM125 с мутацией p.Met1Ile в гене LMNA

Fig. 3. Mutation p.Met1Ile in the LMNA gene А. Fragment of the direct Sanger sequencing of the exon 1 in the LMNA gene. Heterozygous mutation is marked by arrow; В. Pedigree of the DCM125 with p.Met1Ile mutation in the LMNA gene

Интересно, что в исследованиях последних лет мутации, ведущие к возникновению преждевременного стоп-кодона в гене TTN, считаются самой частой из известных генетических причин ДКМП. По разным оценкам, мутации в этом гене составляют 15-25% генотип-позитивных случаев [6, 15, 17, 18]. В нашем исследовании не выявлено такого существенного процента мутаций в этом гене, были обнаружены только 2 генетические замены IV и V классов патогенности (3,6% пробандов). В одной из самых масштабных работ по генотипированию больных с ДКМП, опубликованной в 2015 г., наиболее частыми диагностическими находками были мутации в генах PKP2, MyBPC3 и DSP [6], что не совпадает со спектром мутаций в обследованной нами группе российских больных. Не подтвердилось также описанное в этой работе [6] выявление большого числа мутаций (2-3 патогенных варианта у одного пациента - у >38% больных), что может быть обусловлено различиями выборок больных, так как спектр изученных генов отличался незначительно, а все выявленные замены находились в тех генах, которые были одинаково представлены.

Несмотря на широкий спектр проанализированных генов в пилотной группе взрослых больных ДКМП, подавляющее большинство находок в нашем исследовании было сосредоточено на ограниченном числе генов. Поэтому по итогам анализа диагностических и экономических аспектов проведенной работы мы предлагаем 2-этапную схему ДНК-диагностики у пациентов с манифестацией ДКМП в возрасте старше 18 лет. Первым этапом предлагаем проводить поиск мутаций в малой таргетной панели генов, включающей кодирующую последовательность генов MYH7, MYBPC3, TNNT2, DSP, LMNA, EDM, DES, с последующим каскадным семейным скринингом.

Число генов - кандидатов ДКМП с малым вкладом в общий генетический спектр заболевания ежегодно возрастает по мере накопления новых данных. Поэтому при отсутствии диагностически значимых генетических находок или противоречивых результатов каскадного семейного скрининга вторым этапом мы предлагаем секвенирование полного экзома.

По нашему мнению, предложенный алгоритм позволит оптимизировать временные и финансовые затраты на установление генетической причины заболевания, упростит семейное консультирование и планирование беременности при ДКМП. Возможность установления генетической причины заболевания в сжатые сроки особенно важна в тех случаях, когда семье требуется пренатальная или доимплантационная ДНК-диагностика. В то же время механизмы, определяющие течение и прогноз ДКМП у конкретного пациента, еще подлежат уточнению. Очевидно, конечный фенотип в каждом конкретном случае не определяется изолированным генетическим вариантом. На течение и исход заболевания могут оказывать влияние варианты-модификаторы в одном или в нескольких других генах, а также различные средовые и анамнестические факторы. Корректность клинического использования полученных генетических данных в настоящее время представляется не меньшей проблемой, чем собственно получение генетиче- ского результата.

Согласно формулировке AHA 2006 г. [19], ДКМП определяется как кардиомиопатия смешанной этиологии, для которой значимым является вклад как генетических, так и внешнесредовых факторов риска; заболевание рассматривается как имеющее многофакторную природу. Взрослые аутосомно-доминантные формы ДКМП манифестируют на третьем-четвертом десятилетии жизни, после длительного периода полного или относительного благополучия. Многие пациенты сообщают о занятиях спортом в детстве и юности (в нашей группе таких пациентов было >20%) без очевидных негативных эффектов. Клиническая манифестация часто острая, связанная с перенесенным инфекционным заболеванием (инфекционно-иммунный миокардит), увеличение объема циркулирующей крови (беременность), воздействие токсических (лекарственных, алкогольных) факторов. Другими словами, генетический фактор определяет базовую программу развития кардиомиопатии у конкретного пациента, но сроки манифестации, выраженность клинических проявлений и скорость прогрессирования заболевания во многом зависят от ненаследственных факторов риска (образ жизни, токсические, инфекционные, и т.д.). Подобный механизм развития, в частности, обсуждается для перипартальной ДКМП, антрациклиновой кардиомиопатии [20-22]. С одной стороны, возможности современной медицины для преодоления имеющейся генетической программы располагают очень ограниченными методами, в том числе хирургическими. С другой стороны, как можно более ранняя диагностика носительства мутаций в отягощенных семьях позволяет сформировать схему динамического наблюдения и контроля хотя бы за триггерными факторами среды: грамотное использование современных репродуктивных технологий, осторожный выбор противоопухолевых препаратов, профилактика и активное лечение миокардита, контроль аутоиммунных реакций, что позволит максимально долго сохранить сократительную функцию сердца и качество жизни.

Заключение

Вследствие широкого спектра вовлеченных генов, выраженной клинической гетерогенности и в связи со значительной затратностью генетическая диагностика ДКМП до настоящего момента затруднительна и не является рутинной. Выявляемость клинически значимых вариантов не превышает 17-40% даже в самых масштабных исследованиях, находки в конкретных генах носят единичный характер [23]. Очевидные корреляции обнаруженных изменений с особенностями клинической картины выявляются достаточно редко. Между тем изучение корреляций "генотип-фенотип" необходимо для возможной персонализации существующих подходов к лечению сердечной недостаточности и разработки новых методов лечения, в том числе генотерапевтических подходов. Комплексная оценка клинико-генетического полиморфизма ДКМП позволит оценить индивидуальный риск развития аритмии и сердечной недостаточности, определить прогноз болезни с учетом возраста дебюта заболевания, пола, вовлеченного гена или специфической мутации (или мутаций).

Финансирование. Исследование поддержано грантом РНФ 16-15-10421.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

1. Hershberger R.E., Hedges D.J., Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture // Nat. Rev. Cardiol. 2013. Vol. 10. P. 531- 547.

2. Kinnamon D.D., Morales A., Bowen D.J., Burke W. et al.; on behalf of the DCM Consortium. Toward geneticsdriven early intervention in dilated cardiomyopathy: design and implementation of the DCM Precision Medicine Study // Circ. Cardiovasc. Genet. 2017. Vol. 10, N 6.

3. Tayal U., Prasad S., Cook S.A. Genetics and genomics of dilated cardiomyopathy and systolic heart failure // Genome Med. 2017. Vol. 9, N 1. P. 20.

4. Ponikowski P., Voors A.A., Anker S.D., Bueno H. et al.; Task Force Members; Document Reviewers. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC // Eur. J. Heart Fail. 2016. Vol. 18, N 8. P. 891-975. doi: 10.1002/ejhf.592.

5. McNally E.M., Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms // Circ. Res. 2017. Vol. 121, N 7. P. 731-748. doi: 10.1161/CIRCRE- SAHA.116.309396.

6. Haas J., Frese K.S., Peil B., Kloos W. et al. Atlas of the clinical genetics of human dilated cardiomyopathy // Eur. Heart J. 2015. Vol. 36, N 18. P. 1123-1135. doi: 10.1093/eurheartj/ehu301.

7. Bozkurt B., Colvin M., Cook J., Cooper L.T. et al.; American Heart Association Committee on Heart Failure and Transplantation of the Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; and Council on Quality of Care and Outcomes Research. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association // Circulation. 2016. Vol. 134, N 23. P. e579-e646. Epub 2016 Nov 3.

8. Porcari A., De Angelis G., Romani S., Paldino A. et al. Current diagnostic strategies for dilated cardiomyopathy: a comparison of imaging techniques // Expert Rev. Cardiovasc. Ther. 2019. Vol. 17, N 1. P. 53-63.

9. Тополянский А.ВОсновные симптомы и синдромы в кардиологической практикедифференциальный диагноз в таблицах и схемах справочник под редА.ЛВерткинаМ. : МЕДпресс-информ, 2017. 304 с.

10. Mathew T., Williams L., Navaratnam G., Rana B. et al.; British Society of Echocardiography Education Committee. Diagnosis and assessment of dilated cardiomyopathy: a guideline protocol from the British Society of Echocardiography // Echo Res. Pract. 2017. Vol. 4, N 2. P. G1-G13.

11. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.Аи дрРуководство по интерпретации данныхполученных методами массового параллельного секвенирования (MPS) // Медгенетика. 2017. Т. 16, No 7. С. 4-17.

12. Morales A., Painter T., Li R., Siegfried J.D. et al. Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy // Circulation. 2010. Vol. 121, N 20. P. 2176-2182.

13. van Spaendonck-Zwarts K.Y., Tintelen J.P., van Veldhuisen D.J., Werf R. et al. Peripartum cardiomyopathyas a part of familial dilated cardiomyopathy // Circula- tion. 2010. Vol. 121. P. 2169-2175.

14. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society // Circulation. 2018. Vol. 138. P. e272- e391.

15. Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N. et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC) // Eur. Heart J. 2015. Vol. 36, N 41. P. 2793-2867.

16. Pasotti M., Klersy C., Pilotto A., Marziliano N. et al. Long-term outcome and risk stratification in dilated cardiolaminopathies // J. Am. Coll. Cardiol. 2008. Vol. 52, N 15. P. 1250-1260.

17. Hyun-Young Park. Hereditary dilated cardiomyopathy: recent advances in genetic diagnostics // Korean Circ. J. 2017. Vol. 47, N 3. P. 291-298.

18. Ware J.S., Cook S.A. Role of titin in cardiomyopathy: from DNA variants to patient stratification // Nat. Rev. Cardiol. 2018. Vol. 15, N 4. P. 241-252.

19. Maron B.J., Towbin J.A., Thiene G., Antzelevitch C. et al.; American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiol- ogy, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention // Circula- tion. 2006. Vol. 113. P. 1807-1816.

20. Van Spaendonck-Zwarts K.Y., van Tintelen J.P., van Veldhuisen D.J., van der Werf R. et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy // Circulation. 2010. Vol. 121. P. 2169-2175.

21. Aminkeng F., Ross C.J., Rassekh S.R., Hwang S. et al.; CPNDS Clinical Practice Recommendations Group. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity // Br. J. Clin. Pharmacol. 2016. Vol. 82, N 3. P. 683-695.

22. Kuruc J.C., Durant-Archibold A.A., Motta J., Rao K.S. et al. Development of anthracycline-induced dilated cardiomyopathy due to mutation on LMNA gene in a breast cancer patient: a case report. BMC Cardio- vasc. Disord. 2019. Vol. 19, N 1. P. 169.

23. Towbin J.A. Inherited cardiomyopathies // Circ. J. 2014. Vol. 78, N 10. P. 2347-2356.