Возможности систем искусственного кровообращения на основе стандартного оксигенатора в кардиохирургическом стационаре

Резюме

Цель - отразить возможные пути применения систем искусственного кровообращения (ИК) 1168 на основе стандартного оксигенатора.

Материал и методы. Представлен ретроспективный анализ историй болезни 95 пациентов (2011-2016 гг.): 23 пациентам проведено экстренное подключение системы искусственного кровообращения (ИК) на основе стандартного оксигенатора как компонента сердечно-легочной реанимации при остановке кровообращения, рефрактерной к проводимому комплексу реанимационных мероприятий; 16 пациентам - вспомогательное кровообращение на основе стандартных оксигенаторов и модифицированных мини-контурных систем для обеспечения чрескожного коронарного вмешательства (ЧКВ) высокого риска при отсутствии возможности выполнения аортокоронарного шунтирования (АКШ) - 56 пациентов; применение оригинальной системы аппарата искусственного кровообращения (АИК) из двух независимых контуров - основного (висцерального) и селективного (церебрального), позволяющей создавать различающиеся режимы перфузии для тела и головного мозга при вмешательствах на дуге аорты, проводилось 56 пациентам.

Результаты. У всех пациентов использовались системы искусственного кровообращения на основе стандартного оксигенатора. Для циркуляторной поддержки были использованы центрифужный насос (MAQUET RotaFlow), оксигенаторы (Terumo Capiox RX 25 или Medtronic Affinity NT) с набором магистралей, собранных по стандартной схеме или по принципу мини-контура в модификации, предложенной X. Chang. Подключение: восходящая аорта - правое предсердие (при разведении грудины) или бедренная артерия - бедренная вена (пункционно либо секционно). Средняя продолжительность реанимационных мероприятий (сердечно-легочная реанимация, СЛР) до подключения АИК у выживших пациентов составила 26 (20-30) мин, средняя продолжительность вспомогательного кровообращения - 119 (195-327) мин. Средняя продолжительность СЛР до подключения АИК у умерших пациентов составила 33 (28-43) мин, средняя продолжительность вспомогательного кровообращения - 290 (280-442) мин.

16 пациентов после СЛР и подключения АИК были транспортированы в рентгенохирургическую операционную для проведения экстренного коронароангиографического исследования (КАГ) с последующим стентированием коронарных артерий (КА) в 4 случаях. У 5 пациентов после КАГ проведено повторное АКШ. В 5 случаях экстракорпоральная поддержка была продолжена на системах длительной мембранной оксигенации (ЭКМО): 3 пациента в последующем были успешно отлучены от ЭКМО. Выживаемость составила 39,1% (9 человек) при прогнозируемой летальности 100. В группе пациентов с ЧКВ высокого риска, имеющих противопоказания к АКШ, длительность ИК составила 43±14,6 мин, успех стентирования - 100%, длительность искусственной вентиляции легких (ИВЛ) в отделении реанимации и интенсивной терапии (ОРИТ) - 5,4±3,9 ч, значение тропонинового теста через 12 ч после вмешательства - 239,2±219,1 нг/мл. Инфарктов, инсультов во время процедуры или в послеоперационном периоде не было. Полугодовая выживаемость составила 100%.

В группе пациентов с вмешательствами на дуге аорты и использованием оригинальной системы перфузии на основе двух стандартных оксигенаторов время ИК составило 177,5 (92-312) мин, время антероградной перфузии головного мозга (АПГМ) - 145 (78-220) мин, интраоперационная кровопотеря - 626,5 (300-3200) мл, длительность ИВЛ в ОРИТ - 8,9 (3,6-106,8) ч. Выживаемость составила 100%. Применение данной технологии впервые позволило использовать технику "открытого дистального анастомоза" одновременно с нормотермической перфузией головного мозга при вмешательствах на дуге аорты.

Заключение. Рациональный, творческий и индивидуальный подход к использованию систем ИК на основе стандартного оксигенатора позволяет оперативно и эффективно осуществлять циркуляторную поддержку в различных клинических ситуациях. При определенных условиях системы ИК на основе стандартного оксигенатора могут выступать как альтернатива ЭКМО.

Ключевые слова:сердечно-легочная реанимация, искусственное кровообращение, циркуляторная поддержка

Для цитирования: Евдокимов М.Е., Базылев В.В., Россейкин Е.В., Пантюхина М.А. Возможности систем искусственного кровообращения на основе стандартного оксигенатора в кардиохирургическом стационаре // Клин. и эксперимент. хир. Журн. им. акад. Б.В. Петровского. 2019. Т. 7, No 3. С. 94-104. doi: 10.24411/2308-1198-2019-13011
Статья поступила в редакцию 15.02.2019. Принята в печать 25.07.2019.

В 1953 г. J. Gibbon выполнил успешную операцию ушивания дефекта межпредсердной перегородки на открытом сердце в условиях полного сердечно-легочного обхода на созданном им аппарате искусственного кровообращения (ИК), открыв эру его применения в кардиохирургии [1]. В современных реалиях возможности систем ИК на основе стандартного оксигенатора значительно расширились.

Настоящая публикация отражает пути рационального использования систем ИК на основе стандартного оксигенатора в клинической практике, которые в некоторых случаях могут рассматриваться как альтернатива экстракорпоральной мембранной оксигенации (ЭКМО).

Материал и методы

Для циркуляторной поддержки использовались оксигенаторы (Terumo Capiox RX 25 или Medtronic Affinity NT) с набором магистралей, собранных по стандартной схеме или по принципу мини-контура в модификации, предложенной X. Chang [2]. Подключение: восходящая аорта - правое предсердие (при разведении грудины) или бедренная артерия - бедренная вена (пункционно либо секционно).

Экстракорпоральная поддержка с использованием стандартного оксигенатора как составляющая сердечно-легочной реанимации

Несмотря на совершенствующуюся методологию сердечно-легочной реанимации (СЛР), после остановки сердца в стационаре выживаемость составляет порядка 15-17% и стремится к нулю при рефрактерной к комплексу проводимой сердечно-легочной реанимации (СЛР) остановке сердечной деятельности [3]. Появляется все больше публикаций, отражающих результаты проспективных и ретроспективных исследований, которые свидетельствуют о преимуществах использования экстракорпоральной поддержки и демонстрируют статистически значимое повышение выживаемости при СЛР и более благоприятный неврологический исход [4-7]. В абсолютном большинстве зарубежных источников инструментом экстракорпоральной поддержки является ЭКМО [8, 9]. Опираясь на данные отечественных коллег и собственный опыт, полагаем, что с подобной задачей успешно справляются стандартные системы ИК [10]. С 2013 г. в клинической практике принята стратегия, согласно которой на случай экстренной ситуации в распоряжении дежурной бригады находятся 2 аппарата ИК (АИК), заряженные стандартными оксигенаторами с набором магистралей и подготовленные к работе. При возникновении экстренной ситуации, требующей циркуляторной поддержки, собранные и готовые к применению аппараты ИК позволяют начать перфузию в течение 5-10 мин (рис. 1).

Рис. 1. Алгоритм действий при рефрактерной к проведению комплекса сердечно-легочная реанимация при остановке сердечной деятельности у кардиохирургических пациентов в ФГБУ "Федеральный центр сердечно- сосудистой хирургии" Минздрава России (Пенза)

Fig 1. Sequence of actions for a cardiac arrest in case of refractoriness to CPR procedure in cardiosurgical patients at the Federal Center for Cardiovascular Surgery, Penza

С 2013 по 2016 г. имело место 23 подключения аппарата ИК в рамках комплексных мероприятий при СЛР у пациентов, перенесших кардиохирургические вмешательства с ИК. Возраст пациентов составил 58,4±7,3 года, преобладали мужчины. Решение о целесообразности использования циркуляторной поддержки в рамках СЛР принималось при отсутствии восстановления естественного кровообращения в течение 10-15 мин на фоне рефрактерности к увеличению кардиотонической поддержки и проведению стандартного комплекса СЛР. В 16 случаях ИК подключали центральным способом (восходящая аорта - правое предсердие), в 7 случаях периферическим: через бедренную артерию - бедренную вену (БА-БВ) пункционно. Для технического обеспечения при бедренном доступе использовали артериальные канюли размером 16-18Fr и бедренные канюли размером 24-28Fr, при центральном доступе применяли двухпросветные венозные канюли 32- 36Fr и артериальные 22-24Fr. ИК проводили с объемной скоростью, соответствующей расчетным ко- эффициентам перфузии 2,6-2,8 л/мин/мв режиме умеренной гипотермии с последующим переходом к нормотермическому режиму (табл. 1).

Лабораторный контроль кислотно-щелочного состояния (КЩС) и газов крови осуществлялся каждые 30 мин. Гемотрансфузию и высокопоточную ультрафильтрацию крови во время ИК проводили по показаниям. После подключения аппарата искусственного кровообращения (АИК) всем пациентам проводилась чреспищеводная эхокардиография (ЧП ЭхоКГ), при наличии коронарных шунтов - коронарная флуометрия, 16 пациентов были транспортированы в рентгенохирургическую операционную для экстренного КАГ-исследования. По результатам коронароангиографии (КАГ) 5 пациентам выполнено аортокоронарное шунтирование (АКШ) и 4 - стентирование коронарных артерий. Если при проведении СЛР после подключения ИК и восстановления сердечной деятельности производительность сердца не восстанавливалась, при отсутствии противопоказаний переходили на систему ЭКМО. В 5 случаях экстракорпоральная поддержка была продолжена на системах ЭКМО. 3 пациентов впоследствии были успешно отлучены от ЭКМО. Выживаемость составила 39,1% (9 человек) при прогнозируемой летальности 100%. Длительность пребывания выживших пациентов в ОРИТ составила 7 (3-26) сут, длительность пребывания в стационаре 26 (10-43) сут. Наибольший успех реанимационных мероприятий отмечался у пациентов, которым была обеспечена экстракорпоральная поддержка в течение 20 мин СЛР. При продолжительности реанимационных мероприятий до под- ключения АИК свыше 40 мин выживших не было.

Опираясь на данные отечественных, зарубежных коллег и собственный опыт, можем утверждать, что для повышения вероятности успешного исхода необходимо более раннее приятие решения об использовании вспомогательного кровообращения при СЛР у пациентов с потенциально обратимыми проблемами [11, 12]. В этом случае экстренное подключение ИК является эффективной методикой циркуляторной поддержки при СЛР с наибольшей эффективностью у пациентов с временно и обратимо сниженной функцией сердца.

Экстракорпоральная поддержка с использованием стандартного оксигенатора и модифицированного мини-контура на основе стандартного оксигенатора при чрескожном вмешательстве высокого риска

Идея использования вспомогательного крово- обращения при чрескожном вмешательстве (ЧКВ) высокого риска с 1989 г., когда впервые было опубликовано сообщение о применении ЭКМО при ЧКВ высокого риска, оставалась дискутабельной [13]. Однако в 2015 г. были опубликованы анализ и консенсусное мнение SCAI/ACC/HFSA/STS, в котором использование систем экстракорпоральной поддержки кровообращения у данной группы пациентов носит рекомендательный характер [14]. Зарубежные и российские коллеги для обеспечения безопасности пациента при ЧКВ высокого риска используют системы ЭКМО [15-18]. На базе нашей клиники накоплен успешный опыт экстракорпоральной поддержки кровообращения у пациентов при ЧКВ высокого риска с использованием стандартных оксигенаторов, и их модификаций до мини-контурных систем.

С 2011 по 2016 г. ЧКВ с использованием данных техник выполнено 16 пациентам с многососудистым поражением коронарных артерий (оценка по шкале SINTAX Score 42±9,5 балла), которым было невозможно или нецелесообразно проведение прямой реваскуляризации миокарда (АКШ). 5 процедур носили экстренный характер. Все пациенты имели поражение ствола левой коронарной артерии (СтЛКА) >70% и картину трехсосудистого поражения. Стенозы магистральных артерий имелись у всех пациентов, среднее значение степени стеноза СтЛКА составило 83±8,9%, поражение СтЛКА сочеталось с окклюзией или субокклюзией правой коронарной артерии (ПКА) (незащищенный СтЛКА). Все пациенты относились к группе высокого риска, имели многососудистое поражение коронарных артерий, низкую глобальную сократительная способность левого желудочка (ЛЖ), в связи с чем АКШ было признано нецелесообразным и отдано предпочтение ЧКВ с механической поддержкой кровообращения. У всех пациентов имелось наличие или сочетание комплекса клинических, анатомических, функциональных факторов, повлекших за собой отказ от открытой операции. По интегральной шкале риска неблагоприятного исхода коронарного шунтирования (EuroScore 1) пациенты имели средний балл 10,2±2,8, что соответствовало высокому риску неблагоприятного исхода при прямой реваскуляризации миокарда. У 10 пациентов циркуляторная поддержка осуществлялась на основе использования классической системы ИК, у 6 пациентов на основе стандартного оксигенатора, собранного по принципу миниконтурной системы.

Технические нюансы подготовки к работе мини-контурной системы искусственного кровообращенияв модификации, предложенной
X. Chang и соавт. [2]

Использовали центрифужный насос (MAQUET RotaFlow) и стандартный оксигенатор (Terumo Capiox RX 25 или Medtronic Affinity NT) с набором магистралей. На стойке центрифужного насоса крепили стандартный оксигенатор с венозным резервуаром. В венозную магистраль перед входом в резервуар врезали тройник (1/2-1/2-3/8), в магистраль на выходе из венозного резервуара врезали еще один тройник (3/8-3/8-3/8), оба тройника соединяли магистралью (3/8). Аппарат заполняли стандартными растворами (коллоид 6% - 500,0 маннитол, 15% - 200,0 сбалансированный солевой раствор - 500,0), перекрывали магистраль между тройниками и выполняли деаэрацию системы. Перед началом перфузии накладывали зажимы на венозную магистраль непосредственно перед венозным резервуаром и на магистраль сразу при выходе из венозного резервуара, а зажим с магистрали между тройниками снимали. В результате в начале перфузии кровь по венозной магистрали через врезанные тройники и магистраль 3/8, минуя венозный резервуар, попадала непосредственно в центрифужный насос, затем в оксигенатор, фильтр-ловушку и артериальную магистраль. Перед началом перфузии накладывали зажимы на венозную магистраль непосредственно перед венозным резервуаром и на магистраль сразу при выходе из венозного резервуара, а зажим с магистрали между тройниками снимали. В результате в начале перфузии кровь по венозной магистрали через врезанные тройники и магистраль 3/8, минуя венозный резервуар, попадала непосредственно в центрифужный насос, затем в оксигенатор, фильтр-ловушку и артериальную магистраль (рис. 2).

Рис. 2. Схема и общий вид работы стандартного оксигенатора, собранного по принципу мини-контурной системы

Fig. 2. The scheme and general view of the standard oxygenator, assembled according to the principle of mini-circuit system

Подключение ИК проводилось периферическим доступом [бедренная артерия - бедренная вена (хирургический доступ к сосудам, кисетные швы и канюляция под контролем зрения)]. Во всех случаях после окончания эндоваскулярного вмешательства вспомогательное кровообращение было остановлено при стабильных гемодинамических показателях. Длительность ИК составила 43±14,6 мин. У 4 пациентов во время ЧКВ имела место фибрилляция желудочков и у 1 пациента - асистолия. Эпизоды гемодинамической нестабильности, нарушения ритма купировались самостоятельно после восстановления коронарного кровотока на фоне экстракорпоральной поддержки. Успех стентирования составил 100%, длительность ИВЛ в ОРИТ 5,4±3,9 ч, значение тропонинового теста через 12 ч после вмешательства - 239,2±219,1 нг/мл. Инфарктов, инсультов во время процедуры или в послеоперационном периоде не зафиксировано. Полугодовая выживаемость составила 100%.

В рамках нашего опыта методика поддержки кровообращения на основе стандартных систем ИК и их модификация (миниконтурная система) показали свою эффективность, перспективность и позволяют проводить ЧКВ высокого риска у пациентов, имеющих противопоказания для АКШ, в том числе в клиниках, не имеющих оборудования и опыта ЭКМО. Применение систем длительной экстракорпоральной оксигенации для обеспечения непродолжительных по времени процедур ЧКВ считаем нерациональным [19].

Экстракорпоральная поддержка на основе двух независимых контуров, состоящих из стандартных оксигенаторов при операциях
на дуге аорты

При любых подходах к протезированию дуги аорты практически все авторы сходятся во мнении о необходимости остановки кровообращения для формирования качественного дистального анастомоза с нисходящим отделом аорты, что также отражено в рекомендациях Европейского общества кардиоторакальных хирургов [20]. При остановке кровообращения используют разные подходы защиты головного мозга: это глубокая гипотермия с полной остановкой кровообращения (без перфузии головного мозга) и глубокая или умеренная гипотермия с различными вариантами перфузии головного мозга (антеградная, ретроградная, одно- и двусторонняя, тотальная) [21-24].

Применив индивидуальный подход и методику искусственного кровообращения с двумя независимыми контурами перфузии, мы разработали и внедрили оригинальную систему АИК из двух независимых контуров: основного (висцерального) и селективного (церебрального). На сегодняшний день только она позволяет осуществлять технику "открытого дистального анастомоза" ("холодное тело"), не прекращая нормотермическую селективную антеградную перфузию головного мозга (АПГМ) ("теплая голова"). В доступной литературе мы не встретили упоминаний похожей на предлагаемую нами технологии. Ниже представлена схема АИК с двумя независимыми контурами (рис. 3) [25, 26].

Рис. 3. Схема аппарата искусственного кровообращения с двумя независимыми контурами: висцеральным - основным (тело) и церебральным - селективным (головной мозг)

Fig. 3. The scheme of the heart-lung machine with two independent circuits, visceral - main (body) and cerebral - selective (brain)

Объемную скорость для АПГМ у пациентов рассчитывали, как сумму измеренных методом интраоперационной флуометрии (TTFM, VeryQ MediStim, Norway) скоростей по всем брахиоцефальным ветвям аорты. Таким образом, АПГМ становится полностью персонифицированной и соответствует объемной скорости кровотока по брахиоцефальным ветвям, измеренной до основного хирургического этапа в физиологических условиях кровоснабжения головного мозга (тотальная индивидуальная АПГМ).

ИК осуществляется по оригинальной методике с использованием двух независимых контуров, работающих параллельно друг с другом, для проведения основной (висцеральной) и селективной (церебральной) перфузии. Для создания независимости контуров используются 2 оксигенатора, 2 артериальных насоса (основной - висцеральный роликовый и селективный - церебральный центрифужный), 2 терморегулирующих устройства, 2 смесителя дыхательных газов и 1 общий венозный резервуар (см. рис. 1). Такой способ позволяет проводить основную (висцеральную) и селективную (церебральную) перфузии в разных температурных и скоростных режимах ("теплая голова - холодное тело"): после канюляции аорты и полых вен начинается перфузия по основному контуру в нормотермическом режиме; по мере формирования анастомозов с браншами протеза и всеми брахиоцефальными артериями начинается и увеличивается перфузия головного мозга по селективному (церебральному) контуру, согласно измеренным до перфузии скоростям по брахиоцефальным артериям (тотальная индивидуальная АПГМ), скорость перфузии основного контура уменьшается пропорционально скорости селективного контура; во время реконструкции клапанного аппарата сердца и восходящего отдела аорты начиналось охлаждение в основном (висцеральном) контуре, в то время как в селективном (церебральном) контуре продолжалась нормотермичская перфузия (температура в носоглотке 36,5 °С); по достижении ректальной температуры 26-28 °С кровообращение по основному (висцеральному) контуру останавливалось и формировался дистальный анастомоз протеза с нисходящим отделом аорты (открытый дистальный анастомоз). АПГМ в нормотермическом режиме не прекращалась после формирования дистального анастомоза, возобновлялась перфузия по основному - висцеральному контуру и начиналось согревание; снимали зажим с аорты, восстанавливали сердечную деятельность; перфузия по селективному - церебральному контуру продолжалась до формирования анастомоза протеза восходящей аорты с протезом брахиоцефальных сосудов, висцеральный и церебральный потоки объединялись, и перфузия продолжалась по основному контуру; по завершению согревания (ректальная температура 36,2-36,4 °С, температура в носоглотке 36,5 °С) и нормальных показателях сократительной функции сердца перфузию заканчивали.

С января 2014 г. по июль 2016 гг. выполнено протезирование дуги аорты по данной технологии 56 пациентам (средний возраст - 55,8±11,5 года). Показанием к протезированию дуги аорты являлись аневризма дуги аорты (32 пациента, 57%), острое (8 пациентов, 14%) и хроническое расслоение (16 пациентов, 29%) аорты I и II типа по Дебейки. Основные характеристики интра- и послеоперационного периода приведены в табл. 2.

Госпитальной летальности при использовании данной техники не отмечено. У 2 пациентов в раннем послеоперационном периоде возник неврологический дефицит, связанный с фибрилляцией предсердий. При интраоперационном измерении скорости кровотока по брахиоцефальным артериям у 4 пациентов измеренная суммарная объемная скорость соответствовала рекомендуемой многими авторами скорости АСПГМ 10 мл/кг в минуту; у 12 пациентов указанная скорость была меньше этого значения (в среднем 7,8 мл/кг в минуту); а у 40 - больше (в среднем 14,6 мл/кг в минуту). Необходимо особо подчеркнуть, что представленная методика перфузии двумя независимыми контурами позволила проводить нормотермическую АПГМ практически так же долго, как и всю перфузию (144±36,5 и 185,1±47,6 мин соответственно). Время ИК составило 177,5 (92-312) мин, время АПГМ - 145 (78- 220) мин, интраоперационная кровопотеря - 626,5 (300-3200) мл, длительность ИВЛ в ОРИТ - 8,9 (3,6- 106,8) ч.

Опираясь на собственный опыт, можем утверж- дать, что предложенная оригинальная технология протезирования дуги аорты и ее ветвей является радикальной, универсальной и индивидуальной, показывает хорошие клинические результаты без госпитальной летальности. На сегодняшний день только она позволяет использовать технику "открытого дистального анастомоза" одновременно с нормотермической перфузией головного мозга.

Заключение

Рациональный индивидуальный подход к использованию систем ИК на основе стандартного оксигенатора позволяет оперативно и эффективно осуществлять циркуляторную поддержку в различных клинических ситуациях. При определенных условиях системы ИК на основе стандартного оксигенатора могут выступать как альтернатива ЭКМО.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

1. Аверина Т.БИскусственное кровообращение Искусственное кровообращение // Анналы хир. 2013. No 2. С. 5-12.

2. Chang X., Zhang X., Li X. et al. Use of extracorporeal membrane oxygenation in tracheal surgery: a case series // Perfusion. 2014. Vol. 29. P. 159-162.

3. Pappalardo F., Montisci A. What is extracorporeal cardiopulmonary resuscitation? // J. Thorac. Dis. 2017. Vol. 9, N 6. P. 1415-1419. doi:10.21037/jtd.2017.05.33.

4. Dennis M., McCanny P., D’Souza M. et al. Extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest: a multicentre experience // Int. J. Cardiol. 2017.Vol. 231. P. 131-136.

5. Spangenberg T., Meincke F., Brooks S. et al. "Shock and Go?" extracorporeal cardio-pulmonary resuscitation in the golden-hour of ROSC // Catheter. Cardio- vasc. Interv. 2016. Vol. 88. P. 691-696.

6. Shin T., Jo I., Sim M. et al. Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation // Int. J. Cardiol. 2013. Vol. 168.P. 3424-3430.

7. Mazzeffi M., Sanchez P., Herr D. et al. Outcomes of extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest in adult cardiac surgery patients // J. Thorac. Cardiovasc. Surg. 2016. Vol. 152. P. 1133-1139.

8. Chou T., Fang C., Yen Z., Lee C. et al. A observational study of extracorporeal CPR for in-hospital cardiac arrest secondary to myocardial infarction // Emerg. Med. J. 2014.Vol. 31, N 6. P. 441-447.

9. Siao F., Chiu C., Chiu C., Chen Y. et al. Managing cardiac arrest with refractory ventricular fibrillation in the emergency department: conventional cardiopulmonary resuscitation versus extracorporeal cardiopulmonary resuscitation // Resuscitation. 2015. Vol. 92. P. 70-76.

10. Белов С.И., Пасюга В.В., Бережной С.А., Клепикова И.Ви дрЭкстракорпоральная поддержка жизни в терапии критических состояний у кардиохирургических пациентов // Клини эксперхирЖурнимакадБ.ВПетровского. 2017. Т. 5, No 1. С. 37-40.

11. Cave D., Gazmuri R., Otto C., Nadkarni V., et al. Part 7: CPR techniques and devices: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care // Circulation. 2010. Vol. 122, N 3. P. 720-728.

12. Cheng R., Hachamovitch R., Kittleson M., Patel J. et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients // Ann. Thorac. Surg. 2014. Vol. 97, N 2. P. 610- 616.

13. Taub J., L’Hommedieu B. Raithel S. et al. Extracorporeal membrane oxygenation for percutaneous coronary angioplasty in high risk patients // ASAIO Trans. 1989. Vol. 35, N 3. P. 664-666.

14. Rihal C.S., Naidu S.S. et al.; Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society of Thoracic Surgeons (STS); American Heart Association (AHA) and American College of Cardiology (ACC). 2015 SCAI/ACC/ HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care. Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencionista; Affirmation of Value by the Canadian Association of Interventional Cardiology - Association Canadienne de Cardiologied’intervention // J. Am. Coll. Cardiol. 2015. Vol. 65, N 19. P. 7-26.

15. Ганюков В.И., Попов В.A., Шукевич Д.Ли дрГоспитальные результаты чрескожного коронарного вмешательства с бивентрикулярной циркуляторной поддержкой в сочетании с экстракорпоральной мембранной оксигенацией // Кардиология и серд.-сосудхир. 2014. No 1.С. 15-20.

16. Magovern G., Simpson K. Extracorporeal membrane oxygenation for adult cardiac support: the Allegheny experience // Ann. Thorac. Surg. 1999.Vol. 68. P. 655-661.

17. Осиев А.Г., Байструков В.И., Бирюков А.Ви дрИспользование экстракорпоральной мембранной оксигенации при проведении экстренного чрескожного коронарного вмешательства у пациента с острым инфарктом миокардаосложненным кардиогенным шоком // Междунаржурнинтервенционной кардиоангиологии.2012. No 30. С. 46-50.

18. Chen J., KoW., Yu H. et al. Analysis of the out-come for patients experiencing myocardial infarction and cardiopulmonary resuscitation refractory to conventional therapies necessitating extracorporeal life support rescue // Crit. Care Med. 2006.Vol. 34.P. 950- 957.

19. Базылев В.В., Евдокимов М.Е., Пантюхина М.А., Морозов З.АИскусственное кровообращение при чрескожных коронарных вмешательствах высокого риска // Ангиология и сосудхир. 2016. Т. 22, No 3. С. 112-118.

20. De Paulis R., Czerny M., Weltert L., Bavaria J. et al.; EACTS Vascular Domain Group. Current trends in cannulation and neuroprotection during surgery of the aortic arch in Europe // Eur. J. Cardiothorac. Surg. 2015. Vol. 47, N 5. P. 917-923.

21. Griepp R., Ergin M., McCullough J., Nguy- en K.H. et al. Use of hypothermic circulatory arrest for cerebral protection during aortic surgery // J. Cardiovasc. Surg. 1997.Vol. 12, N 2. P. 312-321.

22. Di Eusanio M., Schepens M., Morshuis W., Dossche K.M. et al. Brain protection using antegrade selective cerebral perfusion: a multicenter study // Ann. Tho- rac. Surg. 2003. Vol. 76, N 4.P. 1181-1188.

23. Kamiya H., Hagl C., Kropivnitskaya I., Böthig D. et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis // J. Thorac. Cardiovasc. Surg. 2007. Vol. 133, N 2. P. 501-509.

24. Pacini D., Leone A., Di Marco L., Marsilli D. et al. Antegrade selective cerebral perfusion in thoracic aorta surgery: safety of moderate hypothermia // Eur. J. Cardiothorac. Surg. 2007. Vol. 31, N 4. P. 618-622.

25. Россейкин Е.В., Евдокимов М.Е., Базылев В.В., Батраков П.Аи др. Cмена парадигмы при операциях на дуге аорты - "теплая голова холодное тело" // Патология кровообращения и кардиохир. 2016. Т. 16, No 4.С. 26-33.

26. Россейкин Е.В., Евдокимов М.Е., Базылев В.В., Вачев С.АПат. RU 2596059 C2: Способ определения объемной скорости регионарного кровотока для проведения селективной антеградной перфузии // Бюл. "ИзобретенияПолезные модели". 2016, августNo 24.

Материалы данного сайта распространяются на условиях лицензии Creative Commons Attribution 4.0 International License («Атрибуция - Всемирная»)

ГЛАВНЫЙ РЕДАКТОР
ГЛАВНЫЙ РЕДАКТОР
Дземешкевич Сергей Леонидович
Доктор медицинских наук, профессор (Москва, Россия)

Журналы «ГЭОТАР-Медиа»