To the content
2 . 2016

Genetic determinants of the infection diseases

Abstract

The genetic factors play an important role in the genetic predisposition of the humans to the certain pathogens or the group of the pathogens and in the efficiency of the drug therapy. In the present review we had discussed the input of the three groups of the inherited factors which are important for the infection disease and treatment: host immunogenetics, genetic characteristics of the pathogen, and the pharmacogenetic markers.

Keywords:genetic susceptibility to the infections, genetic resistance to the infections, antibiotic resistance, cytochromes, pharmacogenetics

Clin. Experiment. Surg. Petrovsky J. 2016. № 2. Р. 18–24.

References

1. Casanova J.-L., Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genomics Hum Genet. 2013; Vol. 14: 215–43.

2. Vogel and Motulski’s Human Genetics: Problems and Approaches. Springer, 2009.

3. Susceptibility to Infectious Diseases: The Importance of Host Genetics (Advances in Molecular and Cellular Microbiology). Ed. R. Bellamy. Cambridge Univ. Press, 2004.

4. Rawlings D.J., Witte O.N. Bruton’s tyrosine kinase is a key regulator in B-cell development. Immunol Rev. 1994; Vol. 138: 105–19.

5. Ochs H., Smith C., Puck J. Primary immunodeficiency: a molecular and genetic approach. 2nd ed. N.Y. : Oxford University Press, 2006.

6. Coffey A.J., Brooksbank R.A., Brandau O., et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998; Vol. 20: 129–35.

7. Rigaud S., Fondaneche M.-C., Lambert N. et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006; Vol. 444: 110–114.

8. Picard C., Casanova J.L., Abel L. Mendelian trait that confer predisposition or resistance to specific infections in human. Curr Opin Immunol. 2006; Vol. 18. P. 383–390.

9. Shichijo K., Ogose T., Kubota M. et al. Recurrent Staphylococcus aureus abscess and fatal pneumococcal septicemia due to IRAK-4 deficiency. Pediatr Int. 2015; Vol. 57, N 6: 1166–9.

10. Grazioli S., Hamilton S.J., McKinnon M.L., et al. IRAK- 4 deficiency as a cause for familial fatal invasive infection by Streptococcus pneumoniae. Clin Immunol. 2016; Vol. 163: 14–6.

11. Baldridge M.T., King K.Y., Boles N.C., Weksberg D.C., et al. Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature. 2010; Vol. 465: 793–7.

12. Zhou Y., Wang X., Liu M., et al. A critical function of toll- like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology. 2010; Vol. 131: 40–9.

13. Alcais A., Abel L., Casanova J.-L. Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest. 2009; Vol. 119: 2506–14.

14. Stuber F., Book M., Klaschik S., et al. Genomics and genotyping in severe sepsis. Adv Sepsis. 2004; Vol. 4 (N 1): 11–6.

15. Villar J., Maca-Meyer N., Peеrez-Meеndez L., et al. Bench- to-bedside review: Understanding genetic predisposition to sepsis. Crit Care. 2004. Vol. 8: 180–9.

16. Sullivan K.E., Winkelstein J.A.. Genetically Determined Disorders of the Complement System. Еds D. Valle, A.L. Beaudet, B. Vogelstein, K.W. Kinzler, et al. N.Y.: McGraw-Hill, 2014. URL: http://ommbid.mhmedical.com/content.aspx?bookid=971&Se ctionid=62652974. Accessed May 11, 2014.

17. Lоpez C., Saravia C., Gomez A. et al. Mechanisms of genetically-based resistance to malaria. Gene. 2010; Vol. 467, N 1–2. P. 1–12.

18. Hadley T.J., Peiper S.C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen // Blood. 1997. Vol. 89. P. 3077–3091.

19. Reid M.E., Lomas-Francis C. The Blood Group Antigen Facts Book. 2nd ed. N.Y. : Elsevier Academic Press, 2004.

20. Trkola A. HIV-host interactions: vital to the virus and key to its inhibition. Curr Opin Microbiol. 2004; Vol. 7: 555–9.

21. Kaslow R.A., Dorak T., Tang J. Influence of host genetic variation on susceptibility to HIV type 1 infection. J Infect Dis. 2005; Vol. 191: S68–S77.

22. Sidorenko S.V., Tishkov V.I. Molecular bases of resistance to the antibiotics. Uspekhi biol. khimii [Advances of the Biochemistry]. 2004; Vol. 44: 236–60. (in Russian)

23. Supotnitskiy М.V. Mechanisms of antibiotics resistance in bacteria. Biopreparaty [Biopharmaceuticals]. 2011; Vol. 2: 4–11. (in Russian)

24. Baltz R.H. Antimicrobials from Actinomycetes: back to the future. Am Soc Microbiol. 2007; Vol. 2: 125–31.

25. Eboumbou Moukoko E.C., Bogreau H., Briolant S., et al. Molecular markers of Plasmodium falciparum drug resistance. Med Trop (Mars.). 2009; Vol. 69 (N 6): 606–11.

26. FDA (Food and Drug Administration): URL: http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ ucm083378.htm

27. Owusu Obeng A., Egelund E.F., Alsultan A., et al. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy. 2014; Vol. 34 (N 7): 703–18.

28. Swen J.J., Nijenhuis M., de Boer A., et al. Pharmacogenetics: From Bench to Byte – An Update of Guidelines. Clin Pharmacol Ther. 2011; Vol. 89 (N 5): 662–73.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»