To the content
2 . 2017

Effects of antiadhesive barriers on the prevention of postoperative peritoneal adhesions assessed in experiment

Abstract

Background. Postoperative peritoneal adhesion formation remains a relevant surgical problem. The application of soluble physico-chemical barriers like 4% icodextrin and antiadhesive barrier KolGARA membrane are different approaches to protect the peritoneal surface from getting linked to adhesive scar. The aim of this study was to investigate the influence of 4% icodextrin and Kol- GARA membrane on the peritoneal tissue response of visceral and parietal peritoneum, adhesion formation and wound healing.

Methods. Different models to prevention of peritoneal adhesions and estimate the adhesions after surgical trauma are compared and discussed in a randomized, experimental in vivo animal study with 80 Wistar rats. Animals were divided into three groups. After 21 days since the primary surgical procedure all rats underwent a second surgery through laparotomy with adhesiolysis, either 4% icodextrin or KolGARA membrane or sodium chloride was applied.

Results. Upon second look, there were significant differences in the adhesion incidence between the groups (р<0.01). Postoperative peritoneal adhesions were predominantly present in the control group as compared to the KolGARA group (23/23 (100%) vs. 14/23 (61%), and to the icodextrin group 13/23 (56%) (р<0.01). There was no difference between group 2 and group 3.

Conclusions. This study showed that these physico-chemical barriers like 4% icodextrin and antiadhesive KolGARA membrane might reduce these postoperative peritoneal adhesion formations in rat models. 

Keywords:postoperative peritoneal adhesions, adhesiolysis, KolGARA membrane, 4% icodextrin

Clin. Experiment. Surg. Petrovsky J. 2017; 5 (2): 33–39.

DOI: 10.24411/2308-1198-2017-00031

Received: 02.11.2016. Accepted: 19.04.2017. 

References

1.    Favorov M., Ali M., Tursunbayeva A., Aitmagambetova I., Kilgore P., Ismailov S., Chorba T. Comparative tuberculosis (TB) prevention effectiveness of Bacillus Calmette-Guerin (BCG) vaccines from different producers among children. PLOSONE 2012. URL:https://doi.org/10.1371/journal.pone.0032567

2.    Belilovskiy E., Borisov S., Dadu A., Favorov M. Implementation of the Computerized TB Surveillance in National Tuberculosis program. Int J Tuberc Lung Dis. The 3rd Congress of IUATLD. European Regionю 14th National Congress on Lung Diseases. June, 2004. Moscow, Abstract book. Abstract #222.

3.    Colditz G., Brewer T., Berkey C., Wilson M., Burdick E., Fineberg H. Efficacy of BCG Vaccine in the Prevention of Tuberculosis. Meta-analysis of published literature. JAMA. 1994. 271: 698-702.

4.    URL: https://www.who.int/immunization/BCG_8May2008_RU.pdf  ("BCG vaccine. WHO Position") (in Russian), date of reference 09.08.2019

5.    Comstock G.W. Simple, practical ways to assess the protective efficacy of a new tuberculosis vaccine. Clin Infect Dis. 2000; 30 (Suppl 3): S250-3.

6.    Romanus V. Tuberculosis in bacillus Calmette-Guerin immunized and non-immunized children in Sweden: a ten years evaluation following cessation of general bacillus Calmette-Guerin immunization of the newborn in 1975. Pediatr Infect Dis J. 1987; 6: 272-80.

7.    Mackenzie R., Dixon A.K. Measuring the effects of imaging: an evaluative framework. Clin Radiol. 1995; 50 (8): 513-8.

8.    https://www.healthcare-economist.com/2016/01/25/efficacy-vs-effectiveness-vs-efficiency/ (date of reference 09.08.2019)

9. Padungchan S., Konjanart S., Kasiratta S., Daramas S., ten Dam H.G. The effectiveness of BCG vaccination of the newborn against childhood tuberculosis in Bangkok. Bull World Health Organ. 1986; 64: 247-58.

10.    Tidjani O., Amedome A., ten Dam H.G. The protective effect of BCG vaccination of the newborn against childhood tuberculosis in an African community. Tubercle. 1986; 67: 269-81.

11.    Knowledge heals. 60 years of useless TB vaccination. https://glagolas.livejournal.com/126884.html (date of reference 09.08.2019) (in Russian)

12.    WHO/UNICEF Review of National Immunization Coverage 19802007, Kazakhstan, 2008.

13.    Statistical TB review for the Republic of Kazakhstan / Ed. Sh.Sh. Ismailova. Almaty; 2009: 65 p. (in Russian)

14.    Agency on Statistics of Republic of Kazakhstan. http://www.stat.kz   (in Russian)

15.    Smith P.G., Morrow R.H. (eds.). Field trials of health interventions in developing countries. A Toolbox. 2nd ed. London: Macmillan Education Limited; 1996.

16.    Belilovsky E.M., Borisov S.E., Rybka L.N. TB surveillance in the city of Moscow and prospects for its development. Tuberkulez i sotsial’no znachimye zabolevaniya [Tuberculosis and Socially Significant Diseases]. 2017; (1): 4-13. (in Russian)

17.    Shapiro C., Cook N., Evans D., et al. A case-control study of BCG and childhood tuberculosis in Cali, Colombia. Int J Epidemiol. 1985; 14: 441-6.

18.    Sirinavin S., Chotpitayasunondh T., Suwanjutha S., Sunakorn P., Chantarojanasiri T. Protective efficacy of neonatal Bacillus Calmette-Guerin vaccination against tuberculosis. Pediatr Infect Dis J. 1991; 10: 359-65.

19.    Comstock G.W. Field trials of tuberculosis vaccines: how could we have done them better? Control Clin Trials. 1994; 15: 247-76.

20.    von Reyn C.F. Routine childhood Bacillus Calmette-Guerin immunization and HIV infection. Clin Infect Dis. 2006; 42: 559-61.

21.    Favorov M., Belilovsky E., Aitmagambetova I., Ismailov S., White M. E., Chorba T. Tuberculosis deaths averted by implementation of the DOTS strategy in Kazakhstan. Int J Tuberc Lung Dis. 2010; 14 (12): 1582-8.

22.    Aksenova V.A., Baryshnikova L.A., Sevostyanova T.A., Klevno N.I. Tuberculosis in children in Russia and the objectives of the TB service and general pediatric service for the prevention and early detection of disease. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Disease]. 2014; (3): 40-6. (in Russian)

23.    Fine PE. BCG vaccination against tuberculosis and leprosy. Br Med Bull. 1988; 44: 691-703.

24.    Rodrigues L.C., Diwan V.K., Wheeler J.G. Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. Int J Epidemiol. 1993; 22 (6): 1154-8.

25.    Mangtani P., Abubakar I., Ariti C., Beynon R., Pimpin L., Fine P.E.M., et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin Infect Dis. 2014;58 (4): 470-80.

26.    Belilovsky E.M., Kochetkova E.Ya., Seltsovsky P.P., Kotova E.A., Rybka L.N., Rostovtsev S.A., et al. TB incidence in Moscow. In: TB control in the city of Moscow. Analytical review of statistical indicators for tuberculosis. 2017, ed. by Bogorodskaya E.M., Litvinov V.I., Belilovsky E.M. Moscow: MNPTSBT; 2018: 33-66. (in Russian)

27.    Ilchenko A.D., Bogorodskaya E.M., Mokhireva L.V. Organization of TB care for the homeless, foreign and nonresident citizens in the city of Moscow. In: TB control in the city of Moscow. Analytical review of statistical indicators for tuberculosis. 2017, ed. by Bogorodskaya E.M., Litvinov V.I., Belilovsky E.M. Moscow: MNPTSBT; 2018: 207-52. (in Russian)

28.    Fine P.E. BCG: the challenge continues. Scand J Infect Dis. 2001; 33: 243-5.

29.    Delogu G., Fadda G. The quest for a new vaccine against tuberculosis. J Infect Dev Ctries. 2009; 3: 5-15.

30. Behr M.A., Wilson M.A., Gill W.P., et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999; 284: 1520-3.

31.    Brosch R., Gordon S.V., Garnier T., et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci. USA. 2007; 104: 5596-601.

32.    Svenson S., Kallenius G., Pawlowski A., Hamasur B. Towards new tuberculosis vaccines. Hum Vaccin. 2010; 6: 309-17.

33.    Russell D.G., Barry C.E. 3rd, Flynn J.L. Tuberculosis: What we don’t know can, and does, hurt us. Science. 2010; 328: 852-6.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»