To the content
2 . 2018

Prosthetic hernioplasty using bacterial nanocellulose: an experimental study

Abstract

The aim is to evaluate the possibility of using bacterial cellulose as a material for a hernioplasty of prosthetic hernia of the anterior abdominal wall.

Material and methods. In experimental studies on dogs, the possibility of prosthetics of a defect in the anterior abdominal wall was studied using new materials. The plates of moist (99.9%) bacterial nanocellulose (BNC), obtained by biosynthesis with the symbiotic culture of Medusomyces giseviiSa-12, were used as the prosthetic material. Biological synthesis of BNC was carried out on nutrient medium, basically consisting of enzymatic hydrolyzate of cellulose from fruit shells of oats. All tech- nological stages of obtaining BNC from fruit shells of oats are carried out according to the author’s patented method. The resulting bacterial cellulose is chemically pure cellulose, has a crystallinity of 88%, and consists of a triclinic phase Iα of 99%. Hernia of the anterior abdominal wall was modeled by performing a mid-median laparotomy. In the future, the plate of bacterial cellulose was fixed to the unclosed edges of the aponeurosis. Along with this, a comparative study of the strengthening of the aponeurosis defect, both with the BNC plate, and with a piece of polypropylene mesh “Ulrapro” (Ethikon) was carried out. On 14th and 60th days a material was taken with a visual assessment of its location in the tissues of the anterior abdominal wall and subsequent histological examination. The microscopy of the obtained BNC samples was additionally performed.

Results. A good fixation of the BNC material in the tissues of the anterior abdominal wall was established with the formation of a capsule of soft tissues on the 14th day around it, the subsequent degradation of the BNC on the 60th day of the postoperative period was shown, with the development of active repair processes in the area of material placement and replacement by its stable newly formed connective tissue elements (fibroblasts, fibrin), less pronounced in comparison with the fixation of the polypropylene mesh, no purulent complications were found during the entire postoperative period.

Conclusion. The obtained results show the possibility of using bacterial nanocellulose for prosthetic hernioplasty.

Keywords:hernia of the anterior abdominal wall, prosthetic hernioplasty, bacterial nanocellulose

Clin. Experiment. Surg. Petrovsky J. 2018; 6 (2): 59–66.

doi: 10.24411/2308-1198-2018-12008. Received: 04.04.2018. Accepted: 20.04.2018.

References

1. Egiev V.N., Voskresenskiy P.K., Emel’yanov S.I. Non-stretching hernioplasty. Moscow: Medpraktika-M, 2002: 147. (in Russian)

2. Sedov M.V., Tarbaev S.D., Gostevskiy A.A. Effectiveness of hernioplasty using a polypropylene mesh implant in the treatment of postoperative ventral hernias. Vestnik khirurgii [Bulletin of Sur- gery]. 2005; (3): 85–7. (in Russian)

3. Coda A., Lamberti R., Martorana S. Classification of prosthetics used in hernia repair based on weight and biomaterial. Hernia. 2012; 16: 9–20. doi: 10.1007/s10029-011-0868-z.

4. Todros S., Pavan P.G., Pachera P., Natali A.N. Synthetic surgical meshes used in abdominal wall surgery: Part I – materials and structural conformation. J Biomed Mater Res B Appl Biomater. 2017; 105 (4): 892–903. doi: 10.1002/jbm.b.33586.

5. Falcao S.C., Coelho A.R., Evencio Neto J. Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats // Acta Cir. Bras. 2008. Vol. 23, N 3. P. 184-191. URL: http://dx.doi.org/10.1590/S0102-86502008000200012.

6. Dahman Y. Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers // J. Nanosci. Nanotechnol. 2009. Vol. 9, N 9. P. 5105-5122. URL: https://www.ncbi.nlm.nih.gov/pubmed/19928189.

7. Gromovyh T.I., Fan Mi Han’, Birjukov E.G., Danil’chuk T.N., et al. Prospects for the use of bacterial cellulose in meat products. M’asnaya industriya [Meat Industry]. 2013; (4): 32–5. (in Russian)

8. Hioki N., Hori Y., Watanabe K., Morinaga Y. et al. Bacterial cellulose as a new material for papermaking // Jpn. TAPPI J. 1995. Vol. 49. P. 718-723.

9. Iguchi M., Yamanaka S., Budhiono A. Bacterial cellulose - a masterpiece of nature’s arts // J. Mater. Sci. 2000. Vol. 35. P. 261- 270. URL: https://doi.org/10.1023/A:1004775229149.

10. Saska S., Barud H.S., Gaspar A.M.M., Marchetto R. et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration // Int. J. Biomater. 2011. Vol. 2011. Article ID 175362. P. 1-8. URL: http://dx.doi.org/10.1155/2011/175362.

11. Klemm D., Schumann D., Udhard U., Marsch S. Bacterial synthesized cellulose: artificial blood vessels for microsurgery // Prog. Polym. Sci. 2001. Vol. 26, N 9. P. 1561-1603. doi: 10.1016/S0079-6700(01)00021-1.

12. Brown E.E., Laborie M.-P.G., Zhang J. Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties // Cellulose. 2012. Vol. 19. P. 127-137. URL: https://doi.org/10.1007/s10570-011-9617-9.

13. Wippermann J., Schumann D., Klemm D., Kosmehl H. et al. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose // Eur. J. Vasc. Endovasc. 2009. Vol. 37, N 5. P. 592-596. URL: https://doi.org/10.1016/j.ejvs.2009.01.007.

14. Schumann D., Wippermann J., Klemm D. et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes // Cellulose. 2009. Vol. 16. P. 877-885. URL: https://doi.org/10.1007/s10570-008-9264-y.

15. Fink H., Faxalv L., Molnar G.F., Drotz K. et al. Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials // Acta Biomater. 2010. Vol. 6. P. 1125- 1130. URL: https://www.ncbi.nlm.nih.gov/pubmed/19800035.

16. Czaja W., Krystynowicz A., Kawecki M., Wysota K. et al. Biomedical applications of microbial cellulose in burn wound recovery // Cellulose: Molecular and Structural Biology. Dordrecht : Springer, 2007. P. 307-321. URL: https://doi.org/10.1007/978-1- 4020-5380-1_17.

17. Fu L. ,Zhang J., Yang G. Presentstatus and applications of bacterial cellulose-based materials for skin tissue repair // Carbohydr. Polym. 2013. Vol. 92. P. 1432-1442. doi: 10.1016/j.carbpol.2012.10.071. URL: https://www.ncbi.nlm.nih.gov/pubmed/23399174.

18. Nimeskern L., Avila HM., Sundberg J. et al. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement // J. Mech. Behav. Biomed. Mater. 2013. Vol. 22. P. 12-21. URL: https://doi.org/10.1016/j.jmbbm.2013.03.005.

19. Kowalska-Ludwicka K., Cala J., Grobelski B., Sygut D. et al. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves // Arch. Med. Sci. 2013. Vol. 9. P. 527-534. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701969.

20. Portal O., Clark W.A., Levinson D.J. Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers // Wounds. 2009. Vol. 21, N 1. P. 1-3. URL: https://www.ncbi. nlm.nih.gov/pubmed/25904579.

21. Solway D.R., Clark W.A., Levinson D.J. A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers // Int. Wound J. 2011. Vol. 8, N 1. P. 69-73. URL: https://www.ncbi.nlm.nih.gov/pubmed/21159127.

22. Rosen C.L., Steinberg G.K., DeMonte F., Delashaw J.B. Jr et al. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects // Neurosurgery. 2011. Vol. 69, N 5. P. 1093-1103. URL: https://www.ncbi.nlm.nih.gov/pubmed/21670715.

23. Melo da Fonte J.B., Valido D.P., Filho L.X. et al. Otoliths/ bacterial cellulose nanocomposite as a potential dental pulp capping biomaterial in canine model // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015. Vol. 120. P. 105. URL: http://dx.doi.org/10.1016/j.oooo.2015.02.469.

24. Amorim W.L., Costa H.O., de Souza F.C. et al. Estudo experimental da resposta tecidual a presenca de celulose produzida por Acetobacter xylinum no dorso nasal de coelhos // Braz. J. Otorhino- laryngol. 2009. Vol. 75. P. 200-207. URL: http://www.redalyc.org/html/3924/392437883008.

25. Hui Jia, Yuanyuan Jia, Jiao Wang, Yuan Hu et al. Poten- tiality of bacterial cellulose as the scaffold of tissue engineering of cornea // Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics (BMEI 2009). Tianjin, China, 2009. doi: 10.1109/BMEI.2009.5305657.

26. Stoica-Guzun A., Stroescu M., Tache F., Zaharescu T. et al. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems // Nucl. Instrum. Methods Phys. Res. B. 2007. Vol. 265. P. 434-438. URL: http://dx.doi.org/10.1016/j.nimb.2007.09.036.

27. Trovatti E., Silva N.H., Duarte I.F., Rosado C.F. et al. Biocellulose membranes as supports for dermal release of lidocaine //Biomacromol. 2011. Vol. 12. P. 4162-4168. URL: https://www.ncbi.nlm.nih.gov/pubmed/21999108.

28. Muller A., Ni Z., Hessler N., Wesarg F. et al. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin // J. Pharm. Sci. 2013. Vol. 102, N 2. P. 579-592. URL: https:// www.ncbi.nlm.nih.gov/pubmed/23192666.

29. Maria L.C.S., Santos A.L.C., Oliveira P.C., Valle A.S.S. et al. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose // Polimeros Ciencia Tecnologia. 2010. Vol. 20, N 1. P. 72-77. URL: http://dx.doi.org/10.1590/S0104- 14282010005000001.

30. Patent RF N 2597291, MPK S12N 1/22, C12P 19/04. Method for producing bacterial cellulose / Budaeva V.V., Gladysheva E.K., Skiba E.A., Sakovich G.V. N 2015129304/10; zayavl. 16.07.2015; opubl. 10.09.2016, Byul. N 25. P. 9. (in Russian)

31. Sakovich G.V., Skiba E.A., Budaeva V.V., Gladysheva E.K., et al. Technological basis for obtaining bacterial nanocellulose from raw materials with zero cost. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2017; 477 (1): 109–12. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»