To the content
3 . 2019

Successful treatment of sepsis-induced cardiomyopathy using extracorporeal membrane oxygenation and polymyxin-b endotoxin adsorption

Abstract

Sepsis-induced cardiomyopathy develops as early as the first day in 25–60% of septic patients. It is believed to be caused by circulating endotoxins and cytokins and characterized by enlargement of left ventricle, a decrease in cardiac output and reversibility in favorable conditions within 10 days. In this article a clinical case of a patient with shock development (with elements of cardiogenic and septic shock) after cardiac surgery is considered and we demonstrate new diagnostic and treatment strategies based on clinical and laboratory phenotype determination of sepsis and cardiovascular sys- tem response type to generalized inflammation; selection of life support therapies, including extra- corporeal membrane oxygenation, continuous renal replacement therapies and target therapy with PMX-B endotoxin adsorption.

Keywords:sepsis, sepsis-induced cardiomyopathy, septic shock, sepsis phenotypes, ECMO, PMX hemoperfusion

For citation: Babaev M.A., Shalginskih O.A., Maslennikova M.A., Urbanov A.V., Komnov R.D., Dymova O.V., Eremenko A.A. Successful treatment of sepsis-induced cardiomyopathy using extracorporeal membrane oxygenation and polymyxin-b endotoxin sorbtion. Clin Experiment Surg. Petrovsky J. 2019; 7 (3): 105–17. doi: 10.24411/2308-1198-2019-13012 (in Russian) 

Received 25.06.2019. Accepted 25.07.2019.

References

1. Gel’fand E.B., Gologorskiy V.A., Gel’fand B.R. Ab- dominalsepsis; integralassessment of the severity of patients and multiple organ dysfunction. Anesteziologiya i reanimatologiya [Anesthesiology and Reanimatology]. 2000; (3): 29–34. (in Russian)

2. Kozlov I.A., Tyurin I.N., Rаutbаrt S.А. Early he- modynamic predictors of lethal outcomes of abdominal sepsis. Vestnik anesteziologii i reanimatologii [Bulletin of Anesthesiology and Reanimatology]. 2018; 15 (2): 6–15. (in Russian)

3. Landesberg G., Gilon D., Meroz Y., et al.Diastolic- dysfunction andmortalityinseveresepsisandsepticshock. EurHeart J. 2012; 33 (7): 895–903.

4. Parker M.M., Shelhamer J.H., Bacharach S.L., et al. Profound but reversible myocardial depression in patients with septic shock.Ann Intern Med. 1984; 100 (4): 483–90.

5. Parker M.M., Shelhamer J.H., Natanson C., et al. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med. 1987; 15 (10): 923–9.

6. Huang S.J., Nalos M., McLean A.S. Is early ven- tricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis. Crit Care (Lond Engl). 2013; 17 (3): R96.

7. Geri G., Vignon P., Aubry A., et al. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: a post hoc analysis. Intensive Care Med. 2019; 45 (5): 657–67.

8. Harmankaya A., Akilli H., Gul M., et al. Assessment of right ventricular functions in patients with sepsis, severe sepsis and septic shock and its prognostic impor- tance: a tissue Doppler study. J Crit Care. 2013; 28 (6): 1111.e7–11.

9. Perner A., Cecconi M., Cronhjort M., et al. Expert statement for the management of hypovolemia in sepsis. Intensive Care Med. 2018; 44 (6): 791–8.

10. Macdonald S.P.J., Keijzers G., Taylor D.M., et al. Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): a pilot randomised controlled trial. Intensive Care Med. 2018; 44 (12): 2070–8.

11. Seymour C.W., Kennedy J.N., Wang S., et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019. doi: 10.1001/jama.2019.5791.

12. Calfee C.S., Delucchi K., Parsons P.E., et al. Sub- phenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014; 2 (8): 611–20.

13. Sweeney T.E., Azad T.D., Donato M., et al. Unsu- pervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med. 2018; 46 (6): 915–25.

14. Davenport E.E., Burnham K.L., Radhakrishnan J., et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016; 4 (4): 259–71.

15. Scicluna B.P., van Vught L.A., Zwinderman A.H., et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017; 5 (10): 816–26.

16. Jayaprakash N., Gajic O., Frank R.D., et al. Elevated modified shock index in early sepsis is associated with myocardial dysfunction and mortality. J Crit Care. 2018; 43: 30–5.

17. Yao X., Carlson D., Sun Y., et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One. 2015; 10 (10): e0139416.

18. Sun Y.,Yao X., Zhang Q.J. et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 2018; 138 (20): 2247–62.

19. Kumar A., Brar R., Wang P., et al. Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol. 1999; 276 (1): R265–76.

20. Rudiger A., Singer M. Mechanisms of sepsis-in- duced cardiac dysfunction. Crit Care Med. 2007; 35 (6): 1599–608.

21. Larche J., Lancel S., Hassoun S.M., et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006; 48 (2): 377–85.

22. Asp M.L., Martindale J.J., Heinis F.I., et al. Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. Biochim Biophys Acta. 2013; 1833 (4): 895–900.

23. Sepúlveda M.,Gonano L.A., Vioti M., et al. Calcium/calmodulin protein kinase II-dependent ryanodine receptor phosphorylation mediates cardiac contractile dysfunction associated with sepsis. Crit Care Med. 2017; 45 (4): e399–408.

24. Bruni F.D., Komwatana P., Soulsby M.E., et al. Endotoxin and myocardial failure: role of the myofibril and venous return. Am J Physiol. 1978; 235 (2): H150–6.

25. Cunnion R.E., Schaer G.L., Parker M.M., et al. The coronary circulation in human septic shock. Circulation. 1986; 73 (4): 637–44.

26. verElst K.M., Spapen H.D., Nguyen D.N., et al. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem. 2000; 46 (5): 650–7.

27. Mehta N.J., Khan I.A., Gupta V., et al. Cardiac troponin I predicts myocardial dysfunction and adverse out-come in septic shock. Int J Cardiol. 2004; 95 (1): 13–7.

28. Ammann P., Fehr T., Minder E.I., et al. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001; 27 (6): 965–9.

29. Bessière F., Khenifer S., Dubourg J., et al. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013; 39 (7): 1181–9.

30. Ehrman R.R., Sullivan A.N., Favot M.J., et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit Care (Lond Engl). 2018; 22 (1): 112.

31. Siddiqui Y., Crouser E.D., Raman S.V. Nonischemic myocardial changes detected by cardiac magnetic resonance in critical care patients with sepsis. Am J Respir Crit Care Med. 2013; 188 (8): 1037–9.

32. Papanikolaou J., Makris D., Mpaka M., et al. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Crit Care (Lond Engl). 2014; 18 (3):R94.

33. Gilyarov M.Yu., Konstantinova E.V., Nesterov A.P., et al. The differential diagnosis of takotsubo cardiomyopathy and myocardial infarction in clinical practice. Trudniy patsient [Difficult Patient]. 2016; 14 (1): 22–4. (in Russian)

34. Jardin F., Fourme T., Page B., et al. Persistent preload defect in severe sepsis despite fluid loading: a longitudinal echocardiographic study in patients with septic shock. Chest. 1999; 116 (5): 1354–9.

35. Dellinger R.P., Levy M.M., Rhodes A., et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013; 39 (2): 165–228.

36. Gattinoni L., Brazzi L., Pelosi P., et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995; 333 (16): 1025–32.

37. Hayes M.A., Timmins A.C., Yau E.H., et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients.N Engl J Med. 1994; 330 (24): 1717–22.

38. Wilkman E. Kaukonen K-M., Pettilä V., et al. As- sociation between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiol Scand. 2013; 57 (4): 431–42.

39. Hernandez G., Bruhn A., Luengo C., et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013; 39 (8): 1435–43.

40. Lyte M., Freestone P.P.E., Neal C.P., et al. Stimu- lation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet.2003; 361 (9352): 130–5.

41. Zangrillo A., Putzu A., Monaco F., et al. Levosi- mendan reduces mortality in patients with severe sepsis and septic shock: a meta-analysis of randomized trials. J Crit Care. 2015; 30 (5): 908–13.

42. Nakamura K., Doi K., Inokuchi R., et al. Endo- toxin adsorption by polymyxin B column or intraaortic balloon pumping use for severe septic cardiomyopathy. Am J Emerg Med. 2013; 31 (5): 893.e1–3.

43. Takahashi Y., Sonoo T., Naraba H., et al. Effect of intra-arterial balloon pumping for refractory septic cardiomyopathy: a case series. Indian J Crit Care Med. 2019; 23 (4): 182–5.

44. Colombo T.,Garatti A., Bruschi G., et al. First successful bridge to recovery with the Impella Recover 100 left ventricular assist device for fulminant acute myocarditis, Ital Heart J. 2003; 4 (9): 642–5.

45. Pořízka M., Kopecký P., Prskavec T., et al. Successful use of extra-corporeal membrane oxygenation in a patient with streptococcal sepsis: a case report and review of literature. Prague Med Rep. 2015; 116 (1): 57–63.

46. Fujisaki N., Takahashi A., Arima T., et al. Successful treatment of Panton-Valentine leukocidin- expressing Staphylococcus aureus-associated pneu- monia co-infected with influenza using extracorporeal membrane oxygenation. In Vivo (Athens). 2014; 28 (5): 961–5.

47. Endo A., Shiraishi A., Aiboshi J., et al. A case of purpura fulminans caused by Hemophilus in fluenzae complicated by reversible cardiomyopathy. J Intensive Care. 2014; 2 (1): 13.

48. Hagiwara S., Murata M., Aoki M., et al. Septic shock caused by Klebsiellaoxytoca: an autopsy case and a survival case with driving Extracorporeal Membrane Oxygenation. Hippokratia. 2013; 17 (2): 171–3.

49. Falk L., Hultman J., Broman L.М. Extracorporeal membrane oxygenationforseptic shock. Crit Care Med. 2019; 47 (8): 1097–105.

50. Yarustovskiy M.B., Abramyan M.V., Krotenko N.P., et al. Etiopathogenetic extracorporeal treatment of severe sepsis in patients after cardiac surgery. Anesteziologiya i reanimatologiya [Russian Journal of Anaesthesiology and Reanimatology ]. 2013; (5): 34–41. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»