To the content
2 . 2020

Successful therapy of endotoxin shock and multiple organ dysfunction using sequential targeted extracorporeal treatment in a patient after combined cardiac surgery

Abstract

Bacterial translocation and severe endotoxemia are some of the causes of infectious complications in patients undergoing cardiopulmonary bypass. Surviving Sepsis Campaign guidelines do not contain clear recommendation on the endotoxemia diagnostics and use of blood purification for endotoxin elimination. Despite this, in clinical practice, a test to determine the level of endotoxin activity (EAA) and new developing laboratory methods to determin blood levels of aromatic microbial metabolites as well as methods of targeted extracorporeal therapy using various membranes are applied more and more often.

The clinical case of treatment of a patient M., who developed endotoxin shock with multiple organ dysfunction (EAA – 1.08 units, lactate – 3.3 mmol/l, norepinephrine up to 430 ng/kg/min, SOFA 10–12 points), after aortocoronary, mamarocoronary bypass surgery and prosthetics of two heart valves against the background of bacterial translocation allows to demonstrate the success of tactics of consistent targeted extracorporeal therapy (2 sessions of PMX-hemoperfusion + 120 hours of оXiris-therapy).

Keywords:microbialload,bacterial translocation,testEAA, aromatic microbial metabolites, endotoxin shock, sepsis, multiple organ dysfunction, PMX hemoperfusion, set oXiris, SETS (Sequential Extracorporeal Therapy in Sepsis)

Conflict of interests. The authors declare no conflict of interests.
For citation: Babaev M.A., Eremenko A.A., Grin O.O., Kostritсa N.S., Dymova O.V., Beloborodova N.V., Pautova A.K., Zakharenkova Yu.S., Levitskya M.V. Successful therapy of endotoxin shock and multiple organ dysfunction using sequential targeted extracorporeal treatment in a patient after combined cardiac surgery. Clin Experiment Surg. Petrovsky J. 2020; 8 (2): 105–14. DOI: 10.33029/2308-1198-2020-8-2-105-114 (in Russian)
Received 05.12.2019. Accepted 26.03.2020.

References

1. Popov D.A. Postoperative infectious complications in cardiac surgery. Annaly khirurgii [Annals of Surgery]. 2013; 5: 15–20. (in Russian)

2. Allen S.J. Gastrointestinal Complications and Car- diac Surgery. J Extra Corpor Technol. 2014; 46: 142–9.

3. Biedrzycka A., Lango R. Tissue oximetry in anaesthe- sia and intensive care. Anaesthesiol Intensive Ther. 2016; 48 (1): 8. DOI: https://doi.org/10.5603/AIT.2016.0005.

4. Marshall J.C., et al. Diagnostic and Prognostic Implications of Endotoxemia in Critical Illness: Results of the MEDIC Study. J Infect Dis. 2004; 190 (3): 527–34. DOI: https://doi.org/10.1086/422254.

5. Moroz V.V., et al. Phenol-carboxylic acids in assessing the severity of the condition and the effectiveness of intensive treatment of patients in intensive care. Obshhaya reanimatologiya [General Reanimatology]. 2016; 12 (4): 37–48. DOI: https://doi.org/10.15360/1813- 9779-2016-4-37-48in Russian)

6. Klein D.J., et al. Endotoxemia related to cardio- pulmonary bypass is associated with increased risk of infection after cardiac surgery: a prospective observa- tional study. Crit Care. 2011; 15 (1): R69. DOI: https:// doi.org/10.1186/cc10051.

7. Romaschin A.D., et al. A rapid assay of endotoxin in whole blood using autologous neutrophil dependent chemiluminescence. J Immunol Methods. 1998; 212 (2): 169–85. DOI: https://doi.org/10.1016/S0022- 1759(98)00003-9.

8. Rhodes A., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43 (3): 304–77. DOI: https://doi.org/10.1007/s00134-017-4683-6.

9. De Rosa S., Villa G., Ronco C. The golden hour of polymyxin B hemoperfusion in endotoxic shock: The basis for sequential extracorporeal therapy in sepsis. Artif Organs. 2020; 44 (2): 184–6. DOI: https:// doi.org/10.1111/aor.13550.

10. Howell M.D., et al. Proof of principle: The predisposition, infection, response, organ failure sepsis staging system. Crit Care Med. 2011; 39 (2): 322–7. DOI: https:// doi.org/10.1097/CCM.0b013e3182037a8e.

11. Ronco C. Cardiorenal and renocardiac syndromes: clinical disorders in search of a systematic definition. Int J Artif Organs. 2008; 31: 1–2. DOI: https:// doi.org/10.1177/039139880803100101.

12. Sandek A., et al. Studies on bacterial endo- toxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012; 157 (1): 80–5. DOI: https://doi.org/10.1016/j.ijcard.2010.12.016.

13. Xie J., et al. Alterations in gut microbiota of abdominal aortic aneurysm mice. BMC Cardiovasc Disord. 2020; 20 (1): 32. DOI: https://doi.org/10.1186/s12872- 020-01334-2.

14. Forkosh E., Ilan Y. The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart. 2019; 6 (1): e000993. DOI: https:// doi.org/10.1136/openhrt-2018-000993.

15. Adamik B., et al. Prolonged Cardiopulmonary By- pass is a Risk Factor for Intestinal Ischaemic Damage and Endotoxaemia. Heart Lung Circ. 2017; 26 (7): 717–23. DOI: https://doi.org/10.1016/j.hlc.2016.10.012.

16. Knackstedt R., Gatherwright J. The role of thermal injury on intestinal bacterial translocation and the mitigating role of probiotics: A review of animal and human studies. Burns. 2019. pii: S0305–4179(19)30207- 4. DOI: https://doi.org/10.1016/j.burns.2019.07.007.

17. Wang Z., et al. The Role of Bifidobacteria in Gut Barrier Function After Thermal Injury in Rats. J Trauma Inj Infect Crit Care. 2006; 61 (3): 650–7. DOI: https://doi. org/10.1097/01.ta.0000196574.70614.27.

18. Rosero O., et al. Impaired Intestinal Mucosal Barrier upon Ischemia-Reperfusion: “Patching Holes in the Shield with a Simple Surgical Method. BioMed Res Int. 2014; 2014: 210901. DOI: https:// doi.org/10.1155/2014/210901.

19. Tsunooka N. Bacterial translocation secondary to small intestinal mucosal ischemia during cardiopulmonary bypass. Measurement by diamine oxidase and peptidoglycan. Eur J Cardiothorac Surg. 2004; 25 (2): 275–80. DOI: https://doi.org/10.1016/j.ejcts.2003.11. 008.

20. Adrie C., et al. Bacterial Translocation and Plasma Cytokines During Transcatheter and Open-Heart Aor- tic Valve Implantation. Shock. 2015; 43 (1): 62–7. DOI: https://doi.org/10.1097/SHK.0000000000000262.

21. Piton G., et al. Acute intestinal failure in critically ill patients: is plasma citrulline the right marker? Intensive Care Med. 2011; 37 (6): 911–7. DOI: https:// doi.org/10.1007/s00134-011-2172-x.

22. Beloborodova N.V. Integration of Metabolism in Man and His Microbiome in Critical Conditions. Obshhaya reanimatologiya [General Reanimatology]. 2012; 8 (4): 42. DOI: https://doi.org/10.15360/1813-9779-2012-4-42. (in Russian)

23. Klein D.J., et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018; 44 (12): 2205–12. DOI: https:// doi.org/10.1007/s00134-018-5463-7.

24. Beloborodova N.V. Sepsis. Metabolomic approach. Мoscow: MIA; 2018. 272 р. ISBN: 978-5-9986- 0350-1. (in Russian)

25. Garofalo A.M., et al. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med Exp. 2019; 7 (S1): 45. DOI: https://doi.org/10.1186/s40635- 019-0236-3.

26. Yarustovsky M.B., Abramyan M.V., Krotenko N.P., Popov D.A., Plyusch M.G., Rogalskaya E.A., et al. Etiopathogenetic extracorporeal treatment of severe sepsis in patients after cardiac surgery Anesteziologiya i reanimatologiya [Russian Journal of Anaesthesiology and Reanimatology]. 2013; 5: 34–41. (in Russian)

27. Turani F., et al. Continuous Renal Replacement Therapy with the Adsorbing Filter oXiris in Septic Patients: A Case Series. Blood Purif. 2019; 47 (3): 1–5. DOI: https://doi.org/10.1159/000499589.

28. Pickkers P., et al. Sepsis Management with a Blood Purification Membrane: European Experience. Blood Purif. 2019; 47 (3): 1–9. DOI: https:// doi.org/10.1159/000499355.

29. Lee C.-T., et al. Effects of polymyxin B hemoperfusion on hemodynamics and prognosis in septic shock patients. J Crit Care. 2018; 43: 202–6. DOI: https:// doi.org/10.1016/j.jcrc.2017.04.035.

30. Pautova A.K., et al. Determination of aromatic microbial metabolites in blood serum by gas chroma- tography-mass spectrometry. Zhurnal analiticheskoy khimii [Journal of Analytical Chemistry]. 2018; 2: 121–8. DOI: https://doi.org/10.7868/S0044450218020044. (in Russian)


All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»