To the content
4 . 2020

Simultaneous lengthening of multiple intestinal segments using biodegradable springs in an experiment

Abstract

Background. Short bowel syndrome (SBS) is the leading cause of intestinal failure in children. Despite the development of modern technology including autologous intestinal reconstructions, SBS is still associated with high mortality. Mechanical elongation or distraction enterogenesis is a promising concept in the search for innovative treatment options for SBS.

Aim - to demonstrate the feasibility of mechanical intestinal elongation by implanting several biodegradable springs without interrupting gastrointestinal tract and to monitor changes occurring throughout the process of distraction.

Methods. Each of 6 pigs aging 2 months and weighing 20 kg underwent intraluminal placement of three biodegradable springs made from poly-ε-caprolactone. Springs were secured by suture plications narrowing the intestinal lumen. Animals were followed for 6, 10, 20 and 30 days postoperatively. They received liquid diet gradually returning to regular feeds. Macro- and microscopic changes of the intestinal segments were analyzed by the end of the experiment.

Results. 2 pigs died from early surgical complications. 4 pigs tolerated liquid diet followed by regular feeds with no sign of bowel obstruction and no weight loss. Most intestinal segments demonstrated up to 2-2,5-fold lengthening. Histological evaluation confirmed proliferation and adaptive changes in all intestinal layers.

Conclusion. Distraction enterogenesis using intraluminal biodegradable springs reliably leads to the growth of the small intestine due to the proliferation of all its layers. Simultaneous implantation of multiple springs allows to gain greater length of the intestine.

Keywords:distraction enterogenesis, short bowel syndrome, intestinal lengthening, biodegradable springs

Funding. The study had no sponsor support.
Conflict of interests. The authors declare no conflict of interests.
Contribution. Concept, design and coordination of the research - Petrov D.A.; writing of the manuscript - Petrov D.A., Trofimchuk E.S., Krupnin A.E.; manufacturing and sterilization of implants - Trofimchuk E.S., Sedush N.G.; surgical part of the experiment - Petrov D.A., Averyanova Yu.V.; morphological, part of the experiment - Tsinzerling V.A., Semenova N.Yu.; study of the properties of implants, processing and analysis of experimental data - Krupnin A.E., Melnikov D.E.; correction of the text of the manuscript - Averyanova Yu.V., Sedush N.G.; analysis and discussion of the results - Chvalun S.N., Razumovsky A.Yu. Dionisiy A.
For citation: Petrov D.A., Averyanova Yu.V., Trofimchuk E.S., Tsinzerling V.A., Sedush N.G., Krupnin A.E., Melnikov D.E., Semenova N.Yu., Chvalun S .N., Razumovsky A.Yu. Simultaneous lengthening of multiple intestinal segments using biodegradable springs in an experiment. Clinical and Experimental Surgery. Petrovsky Journal. 2020; 8 (4): 16-28. DOI: https://doi.org/10.33029/2308-1198-2020-8-4-16-28 (in Russian)

References

1.    Neumann C.G. The expansion of an area of skin by progressive distention of a subcutaneous balloon: use of the method for securing skin for subtotal reconstruction of the ear. Plast Reconstr Surg. 1957; 19: 124-30.

2.    Ilizarov G.A. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop. 1990; 250: 8-26.

3.    Pironi L. Definitions of intestinal failure and the short bowel syndrome. Best Pract Res Clin Gastroenterol. 2016; 30 (2): 173-85.

4.    Thompson J.S., Rochling F.A., Weseman R.A., et al. Current management of short bowel syndrome. Curr Probl Surg. 2012; 49 (2): 52-115. DOI: https://doi.org/10.1067/j.cpsurg.2011.10.002.

5. Wales P.W., Allen N., Worthington P., George D., Compher C., Teitelbaum D.; American Society for Parenteral and Enteral Nutrition. A.S.P.E.N. clinical guidelines: support of pediatric patients with intestinal failure at risk of parenteral nutrition-associated liver disease. JPEN J Parenter Enteral Nutr. 2014; 38 (5): 538-57. DOI: https://doi.org/10.1177/0148607114527772

6.    Duggan C.P., Jaksic T. Pediatric intestinal failure. N Engl J Med. 2017; 377 (7): 666-75.

7.    Bianchi A. Intestinal loop lengthening - a technique for increasing small intestinal length. J Pediatr Surg. 1980; 15 (2): 145-51.

8.    Kim H.B., Fauza D., Garza J., et al. Serial transverse enteroplasty (STEP): a novel bowel lengthening procedure. J Pediatr Surg. 2003; 38: 425-9.

9.    Coletta R., Aldeiri B., Morabito A. Institutional experience with spiral intestinal lengthening and tailoring. Eur J Pediatr Surg. 2019; 29 (5): 412-6. DOI: https://doi.org/10.1055/s-0038-1660850

10.    Lauro A., Coletta R., Morabito A. Restoring gut physiology in short bowel patients: from bench to clinical application of autologous intestinal reconstructive procedures. Expert Rev Gastroenterol Hepatol. 2019; 13 (8): 785-96. DOI: https://doi.org/10.1080/17474124.2019.1640600

11.    Averyanova Yu.V., Razumovskiy A.Yu., Makarov S.P., Petrov D.A., Bryusov G.P., Kochkin V.S., et al. Current strategy for management of short bowel syndrome: a twelve-year single-center experience. Anesteziologiya i reanimatologiya [Anesthesiology and Reanimatology]. 2018; (6): 67-74 DOI: https://doi.org/10.17116/anes-thesiology201806167 (in Russian)

12.    Abi Nader E., Lambe C., Talbotec C., Pigneur B., Lacaille F., Garnier-Lengline H., et al. Outcome of home parenteral nutrition in 251 children over a 14-y period: report of a single center. Am J Clin Nutr. 2016; 103: 1327-36.

13.    Norsa L., et al. Long term outcomes of intestinal rehabilitation in children with neonatal very short bowel syndrome: parenteral nutrition or intestinal transplantation. Clin Nutr. 2019; 38 (2): 926-33.

14.    Abu-Elmagd K.M., et al. Long-term survival, nutritional autonomy and quality of life after intestinal and multivisceral transplantation. Ann Surg. 2012; 256 (3): 494-508.

15.    Spencer A.U., et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg. 2005; 242 (3): 403-9.

16.    Jones B.A., Hull M.A., Potanos K.M., et al. Report of 111 consecutive patients enrolled in the international serial transverse enteroplasty (STEP) data registry: a retrospective observational study. J Am Coll Surg. 2013; 216: 438-46.

17.    Safford S., Freemerman A., Safford K., Bentley R., Skinner M. Longitudinal mechanical tension induces growth in the small bowel of juvenile rats. Gut. 2005; 54: 1085-90.

18.    Luntz J., Brei D., Teitelbaum D., Spencer A. Mechanical extension implants for short-bowel syndrome. Proc SPIE Int Soc Opt Eng. 2006; 6173: 1-24.

19.    Okawada M., Mustafa Maria H., Teitelbaum D.H. Distraction induced enterogenesis: a unique mouse model using polyethylene glycol. J Surg Res. 2011; 170: 41.

20.    Fisher J.G., et al. Extraluminal distraction enterogenesis using shape-memory polymer. J Pediatr Surg. 2015; 50 (6): 938-42.

21.    Koga H., Sun X., Yang H., Nose K., Somara S., Bitar K.N., et al. Distraction-induced intestinal enterogenesis: preservation of intestinal function and lengthening after reimplantation into normal jejunum. Ann Surg. 2012; 255 (2): 302-10.

22.    Sueyoshi R., Woods Ignatoski K.M., Okawada M., Teitelbaum D.H. Distraction-induced intestinal growth: the role of mechanotransduction mechanisms in a mouse model of short bowel syndrome. Tissue Eng Part A. 2014; 20 (3-4): 830-41.

23.    Hosseini H.S., Wood L.S.Y., Taylor J.S., et al. Biomechanical signaling and collagen fiber reorientation during distraction enterogenesis. J Mech Behav Biomed Mater. 2020; 101: 103425. DOI: https://doi.org/10.1016/j.jmbbm.2019.103425

24.    Sullins V.F., Wagner J.P, Suwarnasarn A.T., et al. A novel biodegradable device for intestinal lengthening. J Pediatr Surg. 2014; 49: 109-13.

25.    Rouch J.D., Huynh N., Scott A., et al. Scalability of an endoluminal spring for distraction enterogenesis. J Pediatr Surg. 2016; 51: 1988-92.

26.    Dubrovsky G., Huynh N., Thomas A.L., Shek-herdimian S., Dunn J.C. Intestinal lengthening via multiple in-continuity springs. J Pediatr Surg. 2019; 54 (1): 39-43.

27.    Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer - polycaprolactone in the 21st century. Prog Polym. Sci. 2010; 35: 1217-56. DOI: https://doi.org/10.1016/j.progpolymsci.2010.04.002

28.    Morokov E.S., Demina V.A., Sedush N.G., Kalinin K.T., Khramtsova E.A., Dmitryakov P.V., et al. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation of elastic properties during hydrolytic degradation of lactide and s-caprolactone polymers. Acta Biomater. 2020; 109: 61-72. DOI: https://doi.org/10.1016/j.actbio.2020.04.011

29.    Dubrovsky G., Taylor J.S., Thomas A.-L., et al. Optimization of in-continuity spring-mediated intestinal lengthening. J Pediatr Surg. 2020; 55 (1): 158-63. DOI: https://doi.org/10.1016/jjpedsurg.2019.09.072

30.    Hosseini H.S., Taylor J.S., Wood L.S.Y., Dunn J.C.Y. Biomechanics of small intestine during distraction enterogenesis with an intraluminal spring. J Mech Behav Biomed Mater. 2020; 101: 103413. DOI: https://doi.org/10.1016/j.jmbbm.2019.103413

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»