To the content
4 . 2020

Anatomy of adventitial and perivascular vasa vasorum as a key factor of a long-term coronary artery bypass graft surgery success

Abstract

Background. Despite the use of internal mammary artery (IMA) as a conduit for CABG surgery is preferrable to saphenous vein (SV) due to a higher long-term primary patency rate, the pathophysiological basis of this phenomenon remains unclear. As vascular inflammation and atherosclerosis are associated with apparent vessel vascularisation, vasa vasorum (VV) may be considered as a potentially important factor promoting post-operative stenosis in the conduits.

Aim. To study the vascularisation of coronary artery bypass graft (CABG) surgery conduits and its association with pre-operative prevalence and extent of intimal hyperplasia (IH).

Material and methods. Segments of SV (n=30) and IMA (n=30) have been excised pairwise during CABG surgery, stained with osmium tetroxide and uranyl acetate, embedded into epoxy resin, counterstained with lead citrate and visualised by means of backscattered scanning electron microscopy. Semi-quantitative analysis of IH and VV was performed in ImageJ.

Results. IH was more frequent in SV as compared with IMA (60-70 and 30-40% respectively, p<0.0001). Irrespective of IH measure, it was more pronounced in SV than in IMA (p=0.0005 and p=0.012). Both of IH measurement modalities (thickest to thinnest neointima ratio and percent stenosis) well correlated with each other (r=0.87, p<0.0001). IH correlated with the quantity (r=0.44, p=0.0005) and density (r=0.32, p=0.014) of VV in conduits corroborating the hypothesis of their importance in IH development. Notably, the number of VV was higher in blood vessels with thickest to thinnest neointima ratio >5 (p=0.025). Number and density of VV in SV was higher than in IMA (p=0.0001 и p=0.02, respectively).

Conclusion. IH correlates with both quantity and density of VV in conduits for CABG surgery, and both of these parameters are higher in SV as compared with IMA. Further, SV is characterised by higher frequency of IH than IMA. Taken together, these associations suggest SV are more prone to adventitial and perivascular inflammation and post-operative stenosis in comparison with IMA.

Keywords:coronary artery bypass graft surgery, internal mammary artery, saphenous vein, intimal hyperplasia, vasa vasorum, electron microscopy

Funding. This research was funded by the Complex Program of Basic Research under the Siberian Branch of the Russian Academy of Sciences within the Basic Research Topic of Research Institute for Complex Issues of Cardiovascular Diseases No. 0546-2019-0003 "Atherosclerosis and its comorbidities. Features of diagnostics and risk management in a large industrial region of Siberia".
Conflict of interests. The authors declare no conflict of interests.
Contribution. Sample collection, data analysis, manuscript writing - Frolov A.V., Zagorodnikov N.I.; image acquisition, semi-quantitative image analysis, data analysis - Bogdanov L.A.; sample preparation, image acquisition, data analysis -Mukhamadiyarov R.A.; image acquisition, data analysis - Terekhov A.A.; study design, semi-quantitative image analysis, data analysis, manuscript writing - Kutikhin A.G.
For citation: Frolov A.V., Zagorodnikov N.I., Bogdanov L.A., Mukhamadiyarov R.A., Terekhov A.A., Kutikhin A.G. Anatomy of adventitial and perivascular vasa vasorum as a key factor of a long-term coronary artery bypass graft surgery success. Clinical and Experimental Surgery. Petrovsky Journal. 2020; 8 (4): 65-73. DOI: https://doi.org/10.33029/2308-1198-2020-8-4-65-73 (in Russian)

References

1.    Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U., et al.; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40 (2): 87-165. DOI: https://doi.org/10.1093/eurheartj/ehy394

2.    Fihn S.D., Blankenship J.C., Alexander K.P., Bittl J.A., Byrne J.G., Fletcher B.J., et al. 2014 ACC/AHA/ AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014; 64 (18): 1929-49. DOI: https://doi.org/10.1016/j.jacc.2014.07.017

3.    Gaudino M., Taggart D., Suma H., Puskas J.D., Crea F., Massetti M. The choice of conduits in coronary artery bypass surgery. J Am Coll Cardiol. 2015; 66 (15): 172937. DOI: https://doi.org/10.1016/jjacc.2015.08.395

4.    Carrel T., Winkler B. Current trends in selection of conduits for coronary artery bypass grafting. Gen Thorac Cardiovasc Surg. 2017; 65 (10): 549-56. DOI: https://doi.org/10.1007/s11748-017-0807-8

5.    Lee P.H., Park H., Lee J.S., Lee S.W., Lee C.W. Meta-analysis comparing the risk of myocardial infarction following coronary artery bypass grafting versus percutaneous coronary intervention in patients with multivessel or left main coronary artery disease. Am J Cardiol. 2019; 124 (6): 842-50. DOI: https://doi.org/10.1016/j.amj-card.2019.06.009

6. Farina P., Gaudino M.F.L., Taggart D.P. The eternal debate with a consistent answer: CABG vs PCI. Semin Thorac Cardiovasc Surg. 2020; 32 (1): 14-20. DOI: https://doi.org/10.1053/j.semtcvs.2019.08.009

7.    Head S.J., Milojevic M., Daemen J., Ahn J.M., Boersma E., Christiansen E.H., et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet. 2018; 391 (10 124): 939-48. DOI: https://doi.org/10.1016/S0140-6736(18)30423-9

8.    Bajaj N.S., Patel N., Kalra R., Marogil P., Bhard-waj A., Arora G., et al. Percutaneous coronary intervention vs. coronary artery bypass grafting for left main revascularization: an updated meta-analysis. Eur Heart J Qual Care Clin Outcomes. 2017; 3 (3): 173-82. DOI: https://doi.org/10.1093/ehjqcco/qcx008

9.    Khan A.R., Golwala H., Tripathi A., Riaz H., Kumar A., Flaherty M.P., et al. Meta-analysis of percutaneous coronary intervention versus coronary artery bypass grafting in left main coronary artery disease. Am J Cardiol. 2017; 119 (12): 1949-56. DOI: https://doi.org/10.1016/j.am-jcard.2017.03.022

10.    Caliskan E., de Souza D.R., Boning A., Liakopou-los O.J., Choi Y.H., Pepper J., et al. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat Rev Cardiol. 2020; 17 (3): 155-69. DOI: https://doi.org/10.1038/s41569-019-0249-3

11.    Gaudino M., Antoniades C., Benedetto U., Deb S., Di Franco A., Di Giammarco G., et al.; ATLANTIC (Arterial Grafting International Consortium) Alliance. Mechanisms, consequences, and prevention of coronary graft failure. Circulation. 2017; 136 (18): 1749-64. DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.027597

12.    Gaudino M., Rahouma M.,Abouarab A., LeonardJ., Kamel M., Di Franco A., et al. Radial artery versus saphenous vein as the second conduit for coronary artery bypass surgery: a meta-analysis. J Thorac Cardiovasc Surg. 2019; 157 (5): 1819-25.e10. DOI: https://doi.org/10.1016/j.jtcvs.2018.08.123

13.    Goldman S., Zadina K., Moritz T., Ovitt T., Sethi G., Copeland J.G., et al.; VA Cooperative Study Group No. 207/297/364. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004; 44 (11): 2149-56. DOI: https://doi.org/10.1016/jjacc.2004.08.064

14.    de Vries M.R., Simons K.H., Jukema J.W., Braun J., Quax P.H. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol. 2016; 13 (8): 451-70. DOI: https://doi.org/10.1038/nrcardio.2016.76

15.    Harskamp R.E., Lopes R.D., Baisden C.E., de Winter R.J., Alexander J.H. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg. 2013; 257 (5): 824-33. DOI: https://doi.org/10.1097/SLA.0b013e318288c38d

16.    Virk H.U.H., Lakhter V., Ahmed M., O’Murchu B., Chatterjee S. Radial artery versus saphenous vein grafts in coronary artery bypass surgery: a literature review. Curr Cardiol Rep. 2019; 21 (5): 36. DOI: https://doi.org/10.1007/s11886-019-1112-1

17.    Pu A., Ding L., Shin J., Price J., Skarsgard P., Wong D.R., et al. Long-term outcomes of multiple arterial coronary artery bypass grafting: a population-based study of patients in British Columbia, Canada. JAMA Cardiol. 2017; 2 (11): 1187-96. DOI: https://doi.org/10.1001/jamacardio.2017.3705

18.    Tranbaugh R.F., Lucido D.J., Dimitrova K.R., Hoffman D.M., Geller C.M., Dincheva G.R., et al. Multiple arterial bypass grafting should be routine. J Thorac Cardiovasc Surg. 2015; 150 (6): 1537-44. DOI: https://doi.org/10.1016/j.jtcvs.2015.08.075

19.    Ohyama K., Matsumoto Y., Takanami K., Ota H., Nishimiya K., Sugisawa J., et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol. 2018; 71 (4): 414-25. DOI: https://doi.org/10.1016/jjacc.2017.11.046

20.    Sedding D.G., Boyle E.C., Demandt J.A.F., Slui-mer J.C., Dutzmann J., Haverich A., et al. Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol. 2018; 9: 706. DOI: https://doi.org/10.3389/fimmu.2018.00706

21.    Wang J., Wang Y., Wang J., Guo X., Chan E.C., Jiang F. Adventitial activation in the pathogenesis of injury-induced arterial remodeling: potential implications in transplant vasculopathy. Am J Pathol. 2018; 188 (4): 838-45. DOI: https://doi.org/10.1016/j.aj-path.2017.12.002

22.    Gossl M., Versari D., Hildebrandt H.A., Ba-janowski T., Sangiorgi G., Erbel R., et al. Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. JACC Cardiovasc Imaging. 2010; 3 (1): 32-40. DOI: https://doi.org/10.1016/jjcmg.2009.10.009

23.    Tanaka K., Nagata D., HirataY., TabataY., Nagai R., Sata M. Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipopro-tein E-deficient mice. Atherosclerosis. 2011; 215 (2): 366-73. DOI: https://doi.org/10.1016/j.atherosclerosis.2011.01.016

24.    Tinica G., Vartic C.L., Mocanu V., Baran D., But-covan D. Preoperative graft assessment in aortocoronary bypass surgery. Exp Ther Med. 2016; 12 (2): 804-8. DOI: https://doi.org/10.3892/etm.2016.3412

25.    Dreifaldt M., Souza D., Bodin L., Shi-Wen X., Dooley A., Muddle J., et al. The vasa vasorum and associated endothelial nitric oxide synthase is more important for saphenous vein than arterial bypass grafts. Angiology. 2013; 64 (4): 293-9. DOI: https://doi.org/10.1177/0003319712443729

26.    Galili O., Herrmann J., Woodrum J., Sattler K.J., Lerman L.O., Lerman A. Adventitial vasa vasorum heterogeneity among different vascular beds. J Vasc Surg.

2004; 40 (3): 529-35. DOI: https://doi.org/10.1016/j.jvs.2004.06.032

27.    Kachlik D., Stingl J., Sosna B., Straka Z., La-metschwandtner A., Minnich B., et al. Morphological features of vasa vasorum in pathologically changed human great saphenous vein and its tributaries. Vasa. 2008; 37 (2): 127-36. DOI: https://doi.org/10.1024/0301-1526.37.2.127

28.    Kachlik D., Baca V., Stingl J., Sosna B., La-metschwandtner A., Minnich B., et al. Architectonic arrangement of the vasa vasorum of the human great saphenous vein. J Vasc Res. 2007; 44 (2): 157-66. DOI: https://doi.org/10.1159/000099142

29.    Kachlik D., Lametschwandtner A., Rejmontova J., Stingl J., Vanek I. Vasa vasorum of the human great saphenous vein. Surg Radiol Anat. 2003; 24 (6): 377-81. DOI: https://doi.org/10.1007/s00276-002-0067-9

30.    Lametschwandtner A., Minnich B., Kachlik D., Setina M., Stingl J. Three-dimensional arrangement of the vasa vasorum in explanted segments of the aged human great saphenous vein: scanning electron microscopy and three-dimensional morphometry of vascular corrosion casts. Anat Rec A Discov Mol Cell Evol Biol. 2004; 281 (2): 1372-82. DOI: https://doi.org/10.1002/ar.a.20098

31.    Herbst M., Holzenbein T.J., Minnich B. Characterization of the vasa vasorum in the human great saphenous vein: a scanning electron microscopy and 3D-morphometry study using vascular corrosion casts. Microsc Microanal. 2014; 20 (4): 1120-33. DOI: https://doi.org/10.1017/S1431927614001287

32.    Xu J., Lu X., Shi G.P. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci. 2015; 16 (5): 11 574 - 60 8. DOI: https://doi.org/10.3390/ijms160511574

33.    Mulligan-Kehoe M.J., Simons M. Vasa vasorum in normal and diseased arteries. Circulation. 2014; 129 (24): 2557-66. DOI: https://doi.org/10.1161/CIRCULA-TIONAHA.113.007189

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»