To the content
4 . 2020

Regenerative effects of human umbilical cord hydrogel in the treatment of articular cartilage injuries

Abstract

Articular cartilage injuries are a major risk factor for osteoarthritis.

The aim: to demonstrate the effectiveness of human umbilical cord hydrogel in the treatment of experimental damaged hyaline cartilage.

Material and methods. Human umbilical cord hydrogel has produced using decellularization, homogenization, lyophilic drying, enzymatic solubilization and sterilization. Quantitative assessment of the DNA content in the native umbilical cord and decellularized Wharton's jelly has carried out using the method of spectrophotometry. In animals, a bone-cartilage defect of the femoral condyle depth and diameter 3 mm has formed. The 1st group (8 rabbits) was injected 3 times with 0.9% sodium chloride solution into the knee joint cavity, the 2nd group (7 rabbits) was treated with a hydrogel from the Wharton's jelly umbilical cord. Magnetic resonance imaging of the knee joints has performed after 60 days and the depth and diameter of the defect have measured.

Results. The effectiveness of cells removing from the umbilical cord connective tissue has confirmed by a low DNA content in the hydrogel (29.2 ng/pl). MRI revealed a statistically significant (p=0.018) increase in the diameter of the lesion in the first group after 60 days. The diameter and depth of damage in the group of animals treated with hydrogel were significantly reduced (p<0.017 and p<0.028, respectively).

Conclusion. The cell-free hydrogel from the umbilical cord connective tissue obtained in our laboratory meets the existing standards of DNA content, it is able to polymerize and does not cause inflammatory reactions when administered intra-articular. The use of a hydrogel from the umbilical cord for the treatment of the knee joints traumatic injuries of rabbits leads to a partial reduction in the depth and area of articular cartilage defects.

Keywords:matrix, scaffold, decellularization, Warton's jelly, umbilical cord, magnetic resonance imaging, osteoarthritis, tissue engineering

Funding. The study had no sponsor support.
Conflict of interests. The authors declare no conflict of interests.
Contribution. Experimental work with animals, modeling of a joint defect - Chebotarev S.V.; production of acellular matrix -Kalyuzhnaya L.I., Protasov O.V.; development of a model of traumatic injury to intra-articular cartilage Khominets V.V.; determination of DNA concentration in products - Chernov V.E.; collection of umbilical cords immediately after the birth of the child - Frumkina A.S; statistical processing of results Zemlyanoy D.A.; writing, stylistic and spelling processing of the manuscript, preparation for printing - Shaitor V.M.; decellularization of biomaterial - Tovpeko D.V.; software determination of the size of defects at the stages of research - Malekov D.A.
For citation: Chebotarev S.V., Kalyuzhnaya L.I., Khominets V.V., Chernov V.E., Frumkina A.S., Zemlyanoy D.A., Shaitor V.M., Tovpeko D.V., Malekov D.A., Protasov O.V. Regenerative effects of human umbilical cord hydrogel in the treatment of articular cartilage injuries. Clinical and Experimental Surgery. Petrovsky Journal. 2020; 8 (4): 119-25. DOI:  https://doi.org/10.33029/2308-1198-2020-8-4-119-125 (in Russian)

References

1.    Fedorov R.A., Khominets V.V., Shapovalov V.M., et al. Objective radiological diagnosis of damage to the anterior cruciate ligament of the knee joint in the military. Voenno-meditsinskiy zhurnal [Military and Medical Journal]. 2016; 337 (2): 28-30. (in Russian)

2.    Jiang Y.Z., Zhang S.F., Qi Y.Y., et al. Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant. 2011; 20: 593-607.

3.    Kramer W.C., Hendricks K.J., Wang J. Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention. Int J Clin Exp Med. 2011; 4 (4): 285-98.

4.    Kotel’nikov G.P., Volova L.T., Dolgushin D.A., et al. Features of regenerative processes in the field of plastic surgery of bone-cartilage defects with combined grafts based on autologous and allogeneic cells from costal cartilage tissue in an experiment in rabbits. In: Materialy X Yubileynogo Vserossiyskogo s’ezda travmatologov-or-topedov. Chelovek i ego zdorov’e [Materials of the X Anniversary all-Russian Congress of Traumatologists and Orthopedists. People and Their Health]. Moscow, 2014: 460. (in Russian)

5.    Goldring M.B., Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011; 23 (5): 471-8. DOI: https://doi.org/10.1097/BOR.0b013e328349c2b1

6.    Larsson S., Englund M., Struglics A. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarthritis Cartilage. 2015; 3 (11): 1906-14. DOI: https://doi.org/10.1016/j.joca.2015.05.035

7.    Matveeva Y.L., Luneva S.N., Chegurov O.K., Makushin V.D. Analysis of the relationship of biochemical parameters of synovial fluid of patients with osteoarthritis of the knee joint with their clinical characteristics. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia. 2006; 42 (4): 55-8. (in Russian)

8.    Seo S.S. Management of focal chondral lesion in the knee joint. Knee Surg Relat Res. 2011; 23 (4): 185-96.

9.    Huang H., Zhang X., Hu X. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials. 2014; 35: 608-19.

10.    Kusuma G.D., Carthew J., Lim R. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem Cells Dev. 2017; 26: 617-31.

11.    Roberts S. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee. 2009; 16 (5): 398-404.

12.    Kalyuzhnaya L.I., Khominets V.V., Chebotaryov S.V., et al. The use of biomaterial from human umbilical cords for restoration of articular cartilage. Profilaktiches-kaya i klinicheskaya meditsina [Preventive and Clinical Medicine]. 2019; 73 (4): 45-52. (in Russian)

13.    Tovpeko D.V., Kalyuzhnaya L.I.. Chebotaryov S.V., Men’shikov N.O. Decellularization of human umbilical cord tissue as a promising method for producing cell-free matrix for regenerative medicine and tissue engineering. In: Sbornik tezisov VI Mezhdunarodnoy konferentsii molo-dykh uchenykh: biofizikov, biotekhnologov, molekulyarnykh biologov i virusologov [Collection of Abstracts of the VI International Conference of Young Scientists: Biophysicists, Biotechnologists, Molecular Biologists and Virologists]. Novosibirsk : IPTs NGU, 2019; (4): 646-9. URL: https://www.openbio.ru/openbio_tezis_2019.pdf (in Russian)

14.    Rebrova O.Yu. Statistical analysis of medical data. Application of the STATISTICA application package. Moscow: Media Sfera, 2006: 312 p. (in Russian)

15.    Leung А., Crombleholme T.M., Keswani S.G. Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr. 2015; 24 (3): 371-8.

16.    Toh W.S., Brittberg M., Farr J., et al. Cellular senescence in aging and osteoarthritis. Acta Orthop. 2016; 87: 6-14. DOI: https://doi.org/10.1080/17453674.2016.1235087

17.    Pawitan J.A. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014; 2014: 965849.

18.    Koci Z., Vyborny K., Dubisova J., et al. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Eng Part C Methods. 2017; 23 (6): 333-45. DOI: https://doi.org/10.1089/ten.tec.2017.0089

19. Zhao P., Liu S., Bai Y., et al. hWJECM-derived oriented scaffolds with autologous chondrocytes for rabbit cartilage defect repairing. Tissue Eng Part A. 2018; 24 (11-12): 905-14. DOI: https://doi.org/10.1089/ten.TEA.2017.0223

20.    Badylak S.F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng. 2014; 42: 1517-24. DOI: https://doi.org/10.1007/s10439-013-0963-7

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»