To the content
1 . 2021

Assessment of the role of hemostatic gene polymorphisms in the development of venous thrombosis and pulmonary embolism in the perioperative period in patients with malignant tumors of thoracoabdominal localization

Abstract

BackgroundVenous thrombosis is one of the most common complications among patients suffering from cancer. Currently the leading role in the pathogenesis of venous thromboembolism is given to the phenomenon of thrombophilia, which implies a violation of the hemorheological properties of blood with the development of thrombosis. These conditions can be either genetically determined or acquired. However, the dependence of thrombotic complications on genetic factors in operated cancer patients has not been sufficiently studied.

Aim - to evaluate the role of polymorphisms of blood coagulation system genes (F2, F5, F7, F13, FGB, ITGA2, ITGB3, PAI-1) in the development of venous thrombosis and pulmonary embolism in patients with malignant tumors of thoracoabdominal localization.

Material and methodsThe prospective study included 121 patients operated in the Oncology Department of Surgical Methods of Treatment # 11 (Thoracic Oncology) of Thoracoabdominal Department of the N.N. Blokhin NMRCO in 2018-2019. The study group (n=40) consisted of patients with venous thrombosis/pulmonary embolism in the perioperative period. The control group (n=81) included patients who had no severe concomitant cardiovascular pathology, including a family history.

ResultsIn patients with malignant tumors of thoracoabdominal localization undergoing venous thrombosis/pulmonary embolism compared to patients without thrombotic complications there were statistically significant difference in the frequency of carrying the heterozygous variant (GA) mutation in the F5 gene (coagulation factor V, Leiden factor) (х2=4,118, p=0,043), the homozygous form (CC) mutation in the ITGB3 gene (platelet receptor fibrinogen) (х2=4,118, p=0,043), the overall frequency of mutations in the PAI-1 gene (plasminogen activator inhibitor) (х2=4,025, p=0,045), homo- (TT) and heterozygous forms (CT) of the mutation, as well as the overall frequency of genetic disorders in the ITGA2 (integrin alpha-2) gene (х2=6,977, p=0,009; х2=9,081, p=0,003; x2=19,6, p<0,001, respectively). Association of procoagulant mutations in the genes F2 (coagulation factor II prothrombin), FGB (fibrinogen) with venous thrombosis did not reach statistical significance. The study also did not show a significant difference in the group of patients with thrombotic complications and in the control group in terms of the frequency of carrying polymorphisms G10976A of the F7 gene (coagulation factor VII) and G103T of the F13 gene (coagulation factor XIII) associated with hypocoagulant-type blood clotting disorders.

ConclusionThus, according to the results of the molecular genetic study, a statistically significant difference in the frequency of polymorphisms G1691A of the F5 gene, C807T of the ITGA2 gene, and T1565C of the ITGB3 gene and 5G(-675)4G of the PAI-1 gene was determined in patients with thoracoabdominal tumors who underwent venous thrombosis/pulmonary embolism, compared with patients without thrombotic complications. The issue of prevention of thrombosis in cancer patients who are carriers of procoagulant mutations in the genes of the hemostatic system requires further study.

Keywords:gene polymorphism, hemostasis system, thrombophilia, molecular genetic diagnostics, thrombosis, thromboembolism

Funding. The study was conducted without sponsorship.
Conflict of interests. The authors declare that there is not conflict of interests.
For citation: Korolyova A.A., Gerasimov S.S., Kononets P.V., Lyubchenko L.N. Assessment of the role of hemostatic gene polymorphisms in the development of venous thrombosis and pulmonary embolism in the perioperative period in patients with malignant tumors of thoracoabdominal localization. Clinical and Experimental Surgery. Petrovsky Journal. 2021; 9 (1): 55-62. DOI: https://doi.org/10.33029/2308-1198-2021-9-1-55-62 (in Russian)

References

1.    Elyamany G., Alzahrani A.M., Bukhary E. Cancer-associated thrombosis: an overview. Clin Med Insights Oncol. 2014; 8: 129-37. DOI: https://doi.org/10.4137/CMO.S18991

2.    Mansour A., Ismael Y., Abunasser M., Hammode E., Turfa R., Abdel-Razeq H. The application of clinical variables and models to predict pulmonary embolism in cancer patients: a comprehensive single cancer center experience. Patient Prefer Adherence. 2013; 7: 1111-6. DOI: https://doi.org/10.2147/PPA.S46372

3.    Makatsariya A.D., Vorob’ev A.V., Bitsadze V.O. Malignant neoplasms, thrombophilia, thrombosis. Moscow: Triada-X, 2008: 650 p. (in Russian)

4.    Borsig L., Wong R., Feramisco J. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinomamucins, and tumor metastasis. Proc Natl Acad Sci USA. 2001; 98: 3352-7.

5.    Falanga A. Mechanism of hypercoagulation in malignancy and during chemotherapy. Haemostasis. 1998; 28 (suppl 3): 50-60.

6.    Gouin-Thibault I., Achkar A., Samama M.M. The thrombophilic state in cancer patients. Acta Haematol. 2001; 106 (1-2): 33-42.

7.    Vorob’ev A.V. Malignant diseases and thrombosis. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2008; 7 (2): 18-25. (in Russian)

8.    Khanna A., Reece-Smith A.M., Cunnell M., Mad-husudan S., Thomas A., Bowrey D.J., et al. Venous thromboembolism in patients receiving perioperative chemotherapy for esophagogastric cancer. Dis Esophagus. 2014; 27 (3): 242-7. DOI: https://doi.org/10.1111/dote.12084

9.    Saka M., Morita S., Fukagawa T., Nijjar R., Ka-tai H. Incidence of pulmonary thromboembolism in gastric cancer surgery using routine thrombo-prophylaxis. Gastric Cancer. 2010; 13 (2): 117-22. DOI: https://doi.org/10.1007/s10120-010-0551-6

10.    Tesselaar M.E., Osanto S. Risk of venous thromboembolism in lung cancer. Curr Opin Pulm Med. 2007; 13 (5): 362-7.

11.    Samama M.M. An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch Intern Med. 2000; 160 (22): 3415-20.

12. Kapustin V.M., Blinov M.N., Kargin V.D., et al. Genetic determinants of hereditary thrombophilia in the pathogenesis of venous thrombosis. Terapevticheskiy arkhiv [Therapeutic Archive]. 2003; (10): 78-80. (in Russian)

13.    Kalashnikova E.A., Kokarovtseva S.N., Kovalenko T.F., et al. The frequency of mutations in the genes of factors V (FV Leidena), prothrombin (G20210A) and 5.10-methylenetetrahydrofolate reductase (C677T) in Russians. Meditsinskaya genetika [Medical Genetics]. 2006; 5 (7): 27-9. (in Russian)

14.    Protocol of the All-Russian register «Genetic risk factors for thrombosis in residents living in the territory of the Russian Federation, clinical phenotyping and thromboprophylaxis of thromboembolic complications in ontogenesis». Tromboz, gemostaz i reologiya [Thrombosis, Hemostasis and Rheology]. 2010; 3 (43): 30-78. (in Russian)

15.    Rovenskikh D.N., Maksimov N.M., Tatarni-kova N.P., et al. The role of molecular genetic factors in the risk of acute deep vein thrombosis of the lower extremities. URL: http://_kk.convdocs.org/docs/index-63541.html (date of access March 09, 2013) (in Russian)

16.    Shpolyanskaya N.Yu., Ozolinya L.A., Patrushev L.I., et al. High incidence of Leiden mutation in patients with venous thromboembolic complications in obstetrics and gynecology. URL: www.hemostas.ru/society/publications/p.13.shtml (date of access March 09, 2013) (in Russian)

17.    Barkagan Z.S., Momot A.P. Diagnostics and controlled therapy of hemostatic disorders. 2nd ed., add. Moscow: Newdiamed, 2001: 296 p. (in Russian)

18.    Naran N.H., Chetty N., Crowther N.J. The influence of metabolic syndrome components on plasma PAI-1 concentrations is modified by the PAI-1 4G/5G genotype and ethnicity. Atherosclerosis. 2008; 196 (1): 155-63.

19.    Ding K., Kullo I.J. Genome-wide association studies for atherosclerotic vascular disease and its risk factors. Circ Cardiovasc Genet. 2009; 2: 63-72. DOI: https://doi.org/10.1161/CIRCGENETICS.108.816751

20.    Hanss M.M.L., Biot F. A database for human fibrinogen variants. Ann N Y Acad Sci. 2001; 936: 89-90.

21.    Jusic-Karic A., Terzic R., Jerkic Z., Avdic A., Poanin M. Frequency and association of 1691 (G>A) FVL, 20210 (G>A) PT and 677 (C>T) MTHFR with deep vein thrombosis in the population of Bosnia and Herzegovina. Balkan J Med Genet. 2016; 19 (1): 43-50. DOI: https://doi.org/10.1515/bjmg-2016-0006

22.    Strandberg K., Stenflo J., Nilsson C., Svens-son PJ. APC-PCI complex concentration is higher in patients with previous venous thromboembolism with Factor V Leiden. J Thromb Haemost. 2005; 3 (11): 257880. DOI: https://doi.org/10.111Vj.1538-7836.2005.01617.x

23.    Caprini J.A., Glase C.J., Anderson C.B., Hathaway K. Laboratory markers in the diagnosis of venus thromboembolism. Circulation. 2004; 109 (12 suppl 1):    14-8. DOI: https://doi.org/10.1161/01. CIR.0000122869.59485.36

24.    Holst A.G., Jensen G., Prescott E. Risk factors for venus thromboembolism: results from the Copenhagen City Heart Study. Circulation. 2010; 121 (17): 1896-903. DOI: https://doi.org/10.1161/CIRCALATIO-NAHA.109.921460

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»