To the content
2 . 2021

Ultrastructure of stented right ventricular outflow tract in low-birth-weight infants before surgical correction of tetralogy of Fallot

Abstract

Background. In-stent restenosis is a typical long-term complication of endovascular surgery in adults, yet its pathological features in infants, e.g., those who undergo right ventricular outflow tract (RVOT) stenting because of tetralogy of Fallot (ToF), are obscure.

Aim. To investigate ultrastructural features of stented RVOT excised during surgical correction of ToF in low-birth-weight (<3 kg) infants.

Material and methods. We collected 15 samples of stented RVOT excised during surgical correction of ToF in low-birth-weight infants. Duration between RVOT stenting and surgical correction of ToF was from 2.5 to 6.0 months (average 3.2 months). Samples were fixed in 10% neutral phosphate buffered formalin, postfixed and stained in osmium tetroxide, dehydrated in ethanol and acetone, stained in alcoholic uranyl acetate, and embedded into epoxy resin. Upon epoxy resin polymerization, the samples were grinded and polished. Counterstaining was performed by Reynolds' lead citrate. Visualization was conducted by backscattered scanning electron microscopy.

Results. RVOT had a hierarchical structure and included seven consecutive layers: (1) endothelium; (2) subendothelial layer; (3) dense collagen-rich connective tissue; (4) loose connective tissue; (5) capsule of the stent struts; (6) tunica media; (7) tunica adventitia. While adventitial structure in infants was similar to that in adult state, nascent elastic fibers within media indicated its ongoing development. In RVOT, neointima was enriched by extracellular matrix while cells were sparsely distributed across the tissue. Dense and loose connective tissue alternated each other. Macrophages actively contributed to encapsulation of stent struts, and a major proportion of them transformed into foam cells.

Conclusion. Upon RVOT stenting, fibrotic remodeling leads to formation of neointima with a pronounced and heterogeneous connective tissue.

Keywords:tetralogy of Fallot, underweight children, low body weight, right ventricular outflow tract stenting, total surgical repair, neovascularization

Funding. This work was supported by a comprehensive program of fundamental scientific research of the Siberian Branch of the Russian Academy of Sciences within the framework of the fundamental theme of the Research Institute KPSSZ No. 0546-2019-0002 "Pathogenetic substantiation of the development of implants for cardiovascular surgery based on biocompatible materials, with the implementation of a patient-oriented approach using mathematical modeling, tissue engineering and genomic predictors".
Conflict of interest. The authors declare no conflict of interest.
For citation: Mukhamadiyarov R.A., Lyapin A.A, Kutikhin A.G. Ultrastructure of stented right ventricular outflow tract in low-birth-weight infants before surgical correction of tetralogy of Fallot. Clinical and Experimental Surgery. Petrovsky Journal. 2021; 9 (2): 46-58. DOI: https://doi.org/10.33029/2308-1198-2021-9-2-46-58 (in Russian)

References 

1.    Jalaie H., Steitz J., Afify M., Barbati M.E., Hoeft

K., Assar M.AM., et al. In vivo endothelialization and neointimal hyperplasia assessment after angioplasty of sheep carotid artery with a novel polycarbonate polyurethane patch. J Biomater Appl. 2019; 34 (2): 208-18. DOI: https://doi.org/10.1177/0885328219849368

2.    Braga S.F., Neves J.R., Ferreira J., Carrilho C., Simoes J.C., Mesquita A. Neointimal hyperplasia. Rev Port Cir Cardiotorac Vasc. 2019; 26 (3): 213-7.

3.    Rekhi U., Piche J.E., Immaraj L., Febbraio M. Neointimal hyperplasia: are fatty acid transport proteins a new therapeutic target? Curr Opin Lipidol. 2019; 30 (5): 377-82. DOI: https://doi.org/10.1097/MOL.0000000000000627

4.    McMonagle M.P. The quest for effective pharmacological suppression of neointimal hyperplasia. Curr Probl Surg. 2020; 57 (8): 100807. DOI: https://doi.org/10.1016/j.cpsurg.2020.100807.

5.    Lee T., Ul Haq N. New developments in our understanding of neointimal hyperplasia. Adv Chronic Kidney Dis. 2015; 22 (6): 431-7. DOI: https://doi.org/10.1053/j.ackd.2015.06.010

6.    Sadaghianloo N., Contenti J., Dardik A., Mazure N.M. Role of hypoxia and metabolism in the development of neointimal hyperplasia in arteriovenous fistulas. Int J Mol Sci. 2019; 20 (21): 5387. DOI: https://doi.org/10.3390/ijms20215387

7.    He Y., Jiao D., Chen P., Li N., Jin C. The relationship of lumen diameter and neointimal hyperplasia with inflation pressure. Technol Health Care. 2019; 27 (4): 407-15. DOI: https://doi.org/10.3233/THC-181184

8.    Amatruda C.M., Bona Casas C., Keller B.K., Tahir H., Dubini G., Hoekstra A., et al. From histology and imaging data to models for in-stent restenosis. Int J Ar-tif Organs. 2014; 37 (10): 786-800. DOI: https://doi.org/10.5301/ijao.5000336

9.    Brasiliense L.B., Albuquerque F.C., Spetzler R.F., Hanel R.A. Advances and innovations in revascularization of extracranial vertebral artery. Neurosurgery. 2014; 74 (suppl 1): S102-15. DOI: https://doi.org/10.1227/NEU.0000000000000218

10.    Pleva L., Kukla P., Hlinomaz O. Treatment of coronary in-stent restenosis: a systematic review. J Geriatr Cardiol. 2018; 15 (2): 173-84. DOI: https://doi.org/10.11909/j.issn.1671-5411.2018.02.007

11.    Maillard L., Corseaux D., Altie A., Ung A., Coura-geot J., Barakat M., et al. Time course of reendothelial-ization with Polyzene-F nanocoated Cobra PzF™ coronary stent on rabbit iliac arteries. Cardiovasc Revasc Med. 2020; 21 (2): 195-9. DOI: https://doi.org/10.1016/j.car-rev.2019.11.005

12.    Nokhrin A.V., Tarasov R.S., Mukhamadiyarov R.A., Barbarash L.S. Staged approach: stenting of right ventricular outflow tract followed by tetralogy of Fallot definitive repair in low birthweight children - immediate and long-term results. Detskie bolezni serdtsa i sosudov [Children’s Heart Troubles and Vessels]. 2017; 14 (2): 90-100. (in Russian)

13.    Nokhrin A.V., Tarasov R.S., Mukhamadiyarov R.A., Shishkova D.K., Kutikhin A.G., Barbarash L.S., et al. Two-stage approach for surgical treatment of tetralogy of Fallot in underweight children: clinical and morphological outcomes. J Card Surg. 2019; 34 (5): 293-9.

14.    Miller D.V., Jensen T.A., Bair T.L., Jensen T. A novel, rapid, and low cost method for preparing tissues with metallic stents for routine histology. Cardiovasc Pathol. 2020; 45: 107177. DOI: https://doi.org/10.1016/j.car-path.2019.107177

15.    Mukhamadiarov P.A., Sevostyanova V.V., Shishkova D.K., Nasonova M.V., Zinchuk S.F., Kudryavtseva U.A. Composite contrast using to research biological objects by scanning electron microscopy. Kompleksnye prob-lemy serdechno-sosudistykh zabolevaniy [Complex Problems of Cardiovascular Diseases]. 2017; 6 (3): 93-103. DOI: https://doi.org/10.17802/2306-1278-2017-6-3-93-103  URL: https://www.nii-kpssz.com/jour/article/view/310/274  (in Russian)

16.    Maglio M., Salamanna F., Brogini S., Borsari V., Pagani S., Nicoli Aldini N., et al. Histological, histo-morphometrical, and biomechanical studies of bone-implanted medical devices: hard resin embedding. Biomed Res Int. 2020; 2020: 1804630. DOI: https://doi.org/10.1155/2020/1804630

17.    Mukhamadiyarov R.A., Sevostyanova V.V., Shishkova D.K., Nokhrin A.V., Sidorova O.D., Kutikhin A.G. Grinding and polishing instead of sectioning for the tissue samples with a graft: Implications for light and electron microscopy. Micron. 2016; 85: 1-7. DOI: https://doi.org/10.1016/j.micron.2016.03.005

18.    Mukhamadiyarov R.A., Kutikhin A.G. Backscat-tered scanning electron microscopy approach for assessment of microvessels under conditions of normal microanatomy and pathological neovascularization. Bull Exp Biol Med. 2020; 169 (4): 525-30. DOI: https://doi.org/10.1007/s10517-020-04927-1

19.    Mukhamadiyarov R.A., Mil’to I.V., Kutikhin A.A. Identification of immunocompetent cells in tissues by scanning electron microscopy in backscattered electrons. Arkhiv patologii [Archive of Pathology]. 2020; 82 (4): 708. DOI: https://doi.org/10.17116/patol20208204170 (in Russian)

20.    Mukhamadiyarov R.A., Bogdanov L.A., Mishinov S.V., Kutikhin A.G. A Novel technique for preparation, staining, and visualization of tissue with metal implants and extraskeletal calcification areas. Sovremennye tekhnologii v meditsine [Modern Technologies in Medicine]. 2020; 12 (4): 13-20. DOI: https://doi.org/10.17691/stm2020.12.4.02  (in Russian)

21.    Mukhamadiyarov R.A., Kutikhin A.G. Structure of calcificates in human carotid artery atherosclerotic plaques by means of backscattered scanning electron microscopy. Ateroskleroz [Atherosclerosis]. 2020; 16 (2): 5-15. DOI: https://doi.org/httpsy/doi.org/10.15372/ATER20200201  (in Russian)

22.    Frolov A.V., Zagorodnikov N.I., Bogdanov L.A., Mukhamadiyarov R.A., Terekhov A.A., Kutikhin A.G. Anatomy of adventitial and perivascular vasa vasorum as a key factor of a long-term coronary artery bypass graft surgery success. Klinicheskaya i eksperimental’naya khirurgiya. Zhurnal imeni akademika B.V. Petrovskogo [Clinical and Experimental Surgery. Petrovsky Journal]. 2020; 8 (4): 65-73. (in Russian)

23.    Mukhamadiyarov R.A., Kutikhin A.G. Histology and histopathology of blood vessels: backscattered scanning electron microscopy approach. Fundamental’naya i klinicheskaya meditsina [Fundamental and Clinical medicine]. 2019; 4 (1): 6-14. (in Russian)

24.    Li D.J., Fu H., Tong J., Li Y.H., Qu L.F., Wang P., et al. Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress. Redox Biol. 2018; 15: 22-33. DOI: https://doi.org/10.1016/j.redox.2017.11.013

25.    Zain M.A., Jamil R.T., Siddiqui W.J. Neointimal hyperplasia. In: StatPearls [Electronic resource]. Treasure Island, FL: StatPearls Publishing, 2021 Jan.

26.    Wang D., Gao B., Yue J., Liu F., Liu Y., Fu W., et al. Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE. J Cell Mol Med. 2019; 23 (2): 1528-40. DOI: https://doi.org/10.1111/jcmm.14060

27.    Curcio A., Torella D., Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J. 2011; 75 (6): 1287-96. DOI: https://doi.org/10.1253/circj.cj-11-0366

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»