To the content
2 . 2021

The use of infrared thermography in organ donation and transplantation: state of the issue and own results

Abstract

Background. The temperature of donor organs during preservation and transplantation can affect the interstitial metabolism state and their initial function, as well as reflect the adequacy of blood supply. Infrared thermography (IRT) allows to conduct non-contact temperature measurements on number of points on the organ surface, so it seems to be a promising method for experimental and clinical trials in the field of organ donation and transplantation.

Material and methods. The search for scientific publications was carried out in the bibliographic databases elibrary and Medline. From the initially identified works, relevant papers were selected and classified by IRT application area and timeline.

The practical prospective part of the study included eleven liver transplants: 7 - the whole liver from deceased donors, 4 - the right lobe from living-related donors. To obtain and analyze thermograms, the Guide D160 thermal imager and software were used. IRT was performed during the back-table procedure, warm ischemia, portal and arterial reperfusion.

Results. IRT is used in many fields of medicine, while in clinical practice it is most often used in reconstructive and plastic surgery. In the field of donation and transplantation - much less often, but in recent years there has been an increase in the number of studies.

In our own series, regardless of the type of donor and duration of cold ischemia, the median temperatures of all organs were significantly higher than 4 °C and lay in the range from 7.7 to 12.4 °C for deceased donor grafts and from 13.4 to 16.8 °C - for living donor grafts. During transplantation, the highest organ heating rate was observed during warm ischemia and in the period between portal and arterial reperfusion: 0.22 °C/min (0.18-0.32) and 0.30 °C/min (0.22-0.41), respectively. Immediately after arterial reperfusion, a rapid, statistically significant increase in organ temperature was observed: from 28.8 °C (27.7-31.1) to 33.8 °C (32.5-34.9), p=0.012. 

Conclusion. IRT is a promising method for research in the field of organ donation and transplantation. Temperature characteristics can be used to assess the quality of the donor organ, predict its initial function, and also assess the adequacy of blood supply.

Keywords:liver transplantation, infrared thermography

Funding. The study was supported by Russian Science Foundation grant (Project No. 19-75-10040) 
Conflict of interest. The authors declare no conflict of interest.
For citation: Sushkov A.I., Maltseva A.P., Rudakov V.S., Gubarev K.K., Voskanyan S.E. The use of infrared thermography in organ donation and transplantation: state of the issue and own results. Clinical and Experimental Surgery. Petrovsky Journal. 2021; 9 (2): 96-107. DOI: https://doi.org/10.33029/2308-1198-2021-9-2-96-107 (in Russian)

References

1.    Vodkin I., Kuo A. Extended Criteria Donors in Liver Transplantation. Clin Liver Dis. 2017; 21 (2): 289-301. DOI: https://doi.org/10.1016/j.cld.2016.12.004

2.    Mensink J.W., de Vries K.M., Huurman V.A.L., Pol R.A., Alwayn I.P.J., Braat A.E. Risk analysis of extended pancreas donor selection criteria. Pancreatology. 2019; 19 (7): 994-9. DOI: https://doi.org/10.1016/j.pan.2019.08.010

3.    Querard A.H., Le Borgne F., Dion A., Giral M., Mourad G., Garrigue V., et al. Propensity score-based comparison of the graft failure risk between kidney transplant recipients of standard and expanded criteria donor grafts: toward increasing the pool of marginal donors. Am J Transplant. 2018; 18 (5): 1151-7. DOI: https://doi.org/10.1111/ajt.14651

4.    Bellini M.I., Yiu J., Nozdrin M., Papalois V. The effect of preservation temperature on liver, kidney, and pancreas tissue ATP in animal and preclinical human models. J Clin Med. 2019; 8 (9). DOI: https://doi.org/10.3390/jcm8091421

5.    Kolacz S., Moderhak M., Jankau J. New perspective on the in vivo use of cold stress dynamic thermography in integumental reconstruction with the use of skin-muscle flaps. J Surg Res. 2017; 212: 68-76. DOI: https://doi.org/10.1016/jjss.2016.12.022

6. Hoffmann N., Weidner F., Urban P., Meyer T., Schnabel C., Radev Y., et al. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI. Biomed Tech (Berl). 2017; 62 (6): 599-607. DOI: https://doi.org/10.1515/bmt-2016-0075

7.    Pereira N., Hallock G.G. Smartphone thermography for lower extremity local flap perforator mapping. J Reconstr Microsurg. 2020 Feb 23. DOI: https://doi.org/10.1055/s-0039-3402032

8.    Xu W.H., Lin P., Xu T.T., Wu Y.J., Tu Y.C., Wu Y.P., et al. Application of infrared thermal imaging technology in the design of free anterolateral thigh perforato flap transplantation. Zhongguo Gu Shang. 2019; 32 (11): 1053-7. DOI: https://doi.org/10.3969/jJssn.1003-0034.2019.11.015

9.    Cifuentes I.J., Dagnino B.L., Salisbury M.C., Perez M.E., Ortega C., Maldonado D. Augmented reality and dynamic infrared thermography for perforator mapping in the anterolateral thigh. Arch Plast Surg. 2018; 45 (3): 284-8. DOI: https://doi.org/10.5999/aps.2017.01375

10.    Chen R., Huang Z.Q., Chen W.L., Ou Z.P., Li S.H., Wang J.G. Value of a smartphone-compatible thermal imaging camera in the detection of peroneal artery perforators: Comparative study with computed tomography angiography. Head Neck. 2019; 41 (5): 1450-6. DOI: https://doi.org/10.1002/hed.25581

11.    Unger M., Markfort M., Halama D., Chalopin C. Automatic detection of perforator vessels using infrared thermography in reconstructive surgery. Int J Comput Assist Radiol Surg. 2019; 14 (3): 501-7. DOI: https://doi.org/10.1007/s11548-018-1892-6

12.    Walle L., Fansa H., Frerichs O. Smartphone-based thermography for perforator localisation in microvascular breast reconstruction. Handchir Mikrochir Plast Chir. 2018; 50 (2): 111-7. DOI: https://doi.org/10.1055/s-0043-114006

13.    Rathmann P., Chalopin C., Halama D., Giri P., Meixensberger J., Lindner D. Dynamic infrared thermography (DIRT) for assessment of skin blood perfusion in cranioplasty: a proof of concept for qualitative comparison with the standard indocyanine green video angiography (ICGA). Int J Comput Assist Radiol Surg. 2018; 13 (3): 479-90. DOI: https://doi.org/10.1007/s11548-017-1683-5

14.    Xu W.H., Lin P, Xu T.T., Wu Y.J., Tu Y.C., Wu Y.P., et al. Application of infrared thermal imaging technology in the design of free anterolateral thigh perforator flap transplantation. Zhongguo Gu Shang. 2019; 32 (11): 1053-7. DOI: https://doi.org/10.3969/j.issn.1003-0034.2019.11.015

15.    Kolacz S., Moderhak M., Jankau J. New perspective on the in vivo use of cold stress dynamic thermography in integumental reconstruction with the use of skin-muscle flaps. J Surg Res. 2017; 212: 68-76. DOI: https://doi.org/10.1016/jjss.2016.12.022

16.    Belkin A., Abulafia A., Michaeli A., Ofir S., Assia E.I. Wound temperature profiles of coaxial mini-incision versus sleeveless microincision phacoemulsification. Clin Exp Ophthalmol. 2017; 45 (3): 247-53. DOI: https://doi.org/10.1111/ceo.12851

17.    Alves M.L., Gabarra M.H. Comparison of power Doppler and thermography for the selection of thyroid nodules in which fine-needle aspiration biopsy is indicated. Radiol Bras. 2016; 49 (5): 311-5. PMID: 27818545.

18.    Kim J., Kwon J.H., Kim E., Yoo S.K., Shin C.S. Respiratory measurement using infrared thermography and respiratory volume monitor during sedation in patients undergoing endoscopic urologic procedures under spinal anesthesia. J Clin Monit Comput. 2019; 33 (4): 647-56. DOI: https://doi.org/10.1007/s10877-018-0214-4

19.    AlZubaidi A.K., EthawiY., Schmolzer G.M.,Sherif S., Narvey M., Seshia M. Review of biomedical applications of contactless imaging of neonates using infrared thermography and beyond. Methods Protoc. 2018; 1 (4). DOI: https://doi.org/10.3390/mps1040039

20.    de Font-Reaulx Rojas E., Martinez Ochoa E.E., Lopez Lopez R., Lopez Diaz L.G. Infrared thermography brain mapping surveillance in vascular neurosurgery for anterior communicating artery aneurysm clipping. Surg Neurol Int. 2018; 9: 188. DOI: https://doi.org/10.4103/sni.sni_58_18

21.    Rao P., Keenan J.B., Rajab T.K., Ferng A., Kim S., Khalpey Z. Intraoperative thermographic imaging to assess myocardial distribution of Del Nido cardioplegia. J Card Surg. 2017; 32 (12): 812-5. DOI: https://doi.org/10.1111/jocs.13258

22.    Daly M.G., Melton I., Roper G., Lim G., Crozier I.G. High-resolution infrared thermography of esophageal temperature during radiofrequency ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2018; 11 (2): e005667. DOI: https://doi.org/10.1161/CIR-CEP.117.005667

23.    Antabak A., Sisko J., Romic I., Papes D., Pasini M., Haluzan D., et al. Frontal, axillary and tympanic temperature measurements in children. Lijec Vjesn. 2016; 138 (1-2): 30-3. PMID: 27290811.

24.    Gunaratnam P.J., Tobin S., Seale H., Marich A., McAnulty J. Airport arrivals screening during pandemic (H1N1) 2009 influenza in New South Wales, Australia. Med J Aust. 2014; 200 (5): 290-2. PMID: 24641156.

25.    Ng E.Y., Kaw G.J., Chang W.M. Analysis of IR thermal imager for mass blind fever screening. Microvasc Res. 2004; 68 (2): 104-9. PMID: 15313119.

26.    Nishiura H., Kamiya K. Fever screening during the influenza (H1N1-2009) pandemic at Narita International Airport, Japan. BMC Infect Dis. 2011; 11: 111. DOI: https://doi.org/10.1186/1471-2334-11-111

27.    Sun G., Nakayama Y., Dagdanpurev S., Abe S., Nishimura H., Kirimoto T., et al. Remote sensing of multiple vital signs using a CMOS camera-equipped infrared thermography system and its clinical application in rapidly screening patients with suspected infectious diseases. Int J Infect Dis. 2017; 55: 113-7. DOI: https://doi.org/10.1016/j.ijid.2017.01.007

28.    Negishi T., Abe S., Matsui T., Liu H., Kurosawa M., Kirimoto T., et al. Contactless vital signs measurement system using rgb-thermal image sensors and its clinical screening test on patients with seasonal influenza. Sensors (Basel). 2020; 20 (8): E2171. DOI: https://doi.org/10.3390/s20082171

29.    Belorusov O.S., ZaretskiT V.V., Arapoiannis N.K., Chemisova G.G. [Thermography in the diagnosis of complications after kidney transplantation]. Khirurgiia (Mosk). 1984; 12: 93-7. [in Russian]. PMID: 6394889.

30.    Kopsa H., Czech W., Schmidt P., Zazgornik J., Pils P., Balcke P. Use of thermography in kidney transplantation: two year follow up study in 75 cases. Proc Eur Dial Transplant Assoc. 1979; 16: 383-7. PMID: 398511.

31.    Birsner J.W., Gershon-Cohen J., Gainey M.D. Thermography in detection of human renal transplant rejection. Transplantation. 1971; 11 (4): 424-6. PMID: 4934354.

32.    Kennedy E.M., Wood R.P., Shaw B.W. Jr. Primary nonfunction. Is there a contribution from the back table bath? Transplantation 1990; 49: 739-43. PMID: 2326869.

33.    Morino M., Adam R., Diamond T., Castaing D., Reynes M., Bismuth H. Effect of storage temperature on early graft function following liver transplantation. Clin Transplant. 1992; 6 (2): 97-9. PMID: 10147650.

34.    Hertl M., Chartrand P.B., West D.D., Harvey P.R., Strasberg S.M. The effects of hepatic preservation at 0 degrees C compared to 5 degrees C: influence of antiproteases and periodic flushing. Cryobiology. 1994; 31 (5): 434-40. PMID: 7988152.

35.    Okouchi Y., Tamaki T., Kozaki M. The optimal temperature for hypothermic liver preservation in the rat. Transplantation. 1992; 54 (6): 1129-30. PMID: 1465786.

36.    Villa R., Fondevila C., Erill I., Guimera A., Bombuy E., Gomez-Suarez C., et al. Real-time direct measurement of human liver allograft temperature from recovery to transplantation. Transplantation. 2006; 81 (3): 483-6. PMID: 16477240.

37.    O’Brien T.J., Roghanizad A.R., Jones P.A., Aarde-ma C.H., Robertson J.L., Diller T.E. The Development of a thin-filmed noninvasive tissue perfusion sensor to quantify capillary pressure occlusion of explanted organs. IEEE Trans Biomed Eng. 2017; 64 (7): 1631-7. DOI: https://doi.org/10.1109/TBME.2016.2615241

38.    Basile G., Breda A., Gomez Rivas J., Cacciamani G., Okhunov Z., Dourado A., et al.; Young Academic Urologists (YAU) Uro-technology and Communication Working Group, Working Party of the European Association of Urology (EAU). Comparison between near-infrared fluorescence imaging with indocyanine green and infrared imaging: on-bench trial for kidney perfusion analysis. A project of the ESUT-YAUWP group. Minerva Urol Nefrol. 2019; 71 (3): 280-5. DOI: https://doi.org/10.23736/S0393-2249.19.03353-8

39.    Benjamens S., van den Berg T.A.J., Kuipers T.G.J., Moers C., Berger S.P., Leuvenink H.G.D., et al. Kidney temperature during living donor kidney transplantation is associated with short-term measured glomerular filtration rate - a prospective study. Transpl Int. 2020; 33 (2): 174 - 80. DOI: https://doi.org/10.1111/tri.13528

40.    Lan Q., Sun H., Robertson J., Deng X., Jin R. Noninvasive assessment of liver quality in transplantation based on thermal imaging analysis. Comput Methods Programs Biomed. 2018; 164: 31-47. DOI: https://doi.org/10.1016/j.cmpb.2018.06.003

41.    Sushkov A.I., Gubarev K.K., Rudakov V.S., Svetlakova D.S., Artemiev A.I., Voskanyan S.E. Special features of interstitial glucose metabolism in early liver allograft dysfunction. Clin Experiment Surg. Petrovsky J. 2019; 7 (2): 24-30. doi: 10.24411/2308-1198-2019-12003. (in Russian)

42.    Olthoff K.M., Kulik L., Samstein B., Kaminski M., Abecassis M., Emond J., et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010; 16 (8): 943-9. DOI: https://doi.org/10.1002/lt.22091

43.    Silva M.A., Murphy N., Richards D.A.,Wigmore S.J., Bramhall S.R., Buckels J.A., et al. Interstitial lactic acidosis in the graft during organ harvest, cold storage, and reperfusion of human liver allografts predicts subsequent ischemia reperfusion injury. Transplantation. 2006; 82 (2): 227-33. PMID: 16858286.

44.    Puhl G., Olschewski P., Schoning W., Neumann U., Sredznizki D., Dankof A., et al. 24-h storage of pig livers in UW, HTK, hydroxyethyl starch, and saline solution: is microdialysis an appropriate method for the continuous graft monitoring during preservation? Transpl Int. 2006; 19 (4): 303-9. PMID: 16573546.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»