To the content
2 . 2022

Status of INavin atrial cardiomyocytes after administration of cardioplegia

Abstract

Background. Cardioplegia plays an important role in cardiac surgery, providing myocardial protection and making it possible to perform open-heart surgery. Thereby in early postoperative period we have dealings with atrial fibrillation, that becomes a significant problem. Atrial fibrillation is one of the most common forms of cardiac rhythm disorder developing after cardiovascular surgery performed with the use of cardioplegia in patients with coronary artery disease. Atrial fibrillation develops in 30–50% of such cases. The pathogenesis of this complication is not fully understood, but its multifactorial nature is known. One of the most significant factors is electrolyte disorders associated with malfunctioning of the cardiomyocyte ion channels after the administration of cardioplegic solutions.

Aim. To study the effect of cardioplegia on changes in functions of the electrophysiological characteristics of INav ion channels in human atrial cardiomyocytes before and after administration  of a cardioplegic solution.

Material and methods. The study included 30 patients who underwent surgical coronary revascularization using with an intracellular cardioplegic solution. The study of INav was performed using the patch clamp electrophysiological method.

Results. When analyzing the electrophysiological curves obtained before and after the administration of cardioplegia, we found a decrease in the amplitude of the fast sodium current by 13% and a shift in the maximum by 12 mV after cardioplegia. From the activation curves we obtained the half-height and slope of the activation curve before and after administration of cardioplegia. The result indicates a change in the dynamics of INav activation and a decrease in the conduction velocity.

Conclusion. Our study demonstrated that, after cardioplegia, the amplitude of the fast sodium INav current decreases with a shift of the activation curve to the right. This fact suggests that some of the fast sodium channels are inactivated. Thus, the conduction velocity of cardiac impulse decreases by 1.47±0.1 times, which, in our opinion, is one of the important pathogenetic factors in the development of atrial fibrillation in the immediate postoperative period.

Keywords:cardioplegia; custodial; atrial fibrillation; cardiac arrhythmias; INav ion channels; cardiomyocytes; electrolyte disorders

Funding. The study had no sponsor support.
Conflict of interest. The authors declare no conflict of interest.
For citation: Shumakov D.V., Agladze K.I., Zybin D.I., Agafonov E.G., Popov M.A., Romanova S.G., Frolova Sh.R., Slotvitsky M.M., Berezhnoy A.K., Tsvelaya V.A. Status of INav in atrial cardiomyocytes after administration of cardioplegia. Clinical and Experimental Surgery. Petrovsky Journal. 2022; 10 (2): 26–32. DOI: https://doi.org/10.33029/2308-1198-2022-10-2-26-32  (in Russian)

References

1. Chugh S.S., Havmoeller R., Narayanan K., et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014; 129 (8): 837–47. DOI: https://doi.org/10.1161/CIRCULATIONAHA. 113.005119  

2. Padfield G.J., Steinberg C., Swampillai J. Progression  of paroxysmal to persistent atrial fibrillation: 10-year follow-up in the Canadian Registry of Atrial Fibrillation. Heart Rhythm. 2017;  14 (6): 801–7. DOI: https://doi.org/10.1016/j.hrthm.2017.01.038  

3. Jalife J., Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2015; 25 (6): 475–84. DOI: https://doi.org/10.1016/j.tcm.2014.12.015  

4. de Vos C.B., Pisters R., Nieuwlaat R., et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J Am Coll Cardiol. 2010; 55 (8): 725–31. DOI: https://doi.org/10.1016/j.jacc. 2009.11.040  

5. Martins R.P., Kaur K., Hwang E., et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation. 2014; 129 (14): 1472–82. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.004742

6. Krijthe B.P., Heeringa J., Kors J.A., et al. Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study. Int J Cardiol. 2013; 168: 5411–5. DOI: https://doi.org/10.1016/j.ijcard.2013.08.048  

7. Lancaster T.S., Schill M.R., Greenberg J.W., et al. Potassium and magnesium supplementation do not protect against atrial fibrillation after cardiac operation: a time-matched analysis. Ann Thorac Surg. 2016; 102: 1181–8. DOI: https://doi.org/10.1016/j.athoracsur.2016.06.066   

8. Lu Y.Y., Cheng C.C., Chen Y.C., et al. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: a contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm. 2016; 13: 781–8. DOI: https://doi.org/10.1016/j.hrthm.2015.12.005  

9. Sinno H., Derakhchan K., Libersan D., et al. Atrial ischemia promotes atrial fibrillation in dogs. Circulation. 2003; 107: 1930–6.  DOI: https://doi.org/10.1161/01.CIR.0000058743.15215.03  

10.   Álvarez-García J., Vives-Borrás M., Gomis P., et al. Electrophysiological effects of selective atrial coronary artery occlusion in humans. Circulation. 2016; 133: 2235–42. DOI: https://doi.org/10.1161/CIRCULATIONAHA.116.021700   

11.   Kaw R., Hernandez A.V., Masood I., et al. Short-and long-term mortality associated with new-onset atrial fibrillation after coronary artery bypass grafting: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2011; 141 (5): 1305–12. DOI: https://doi.org/10.1016/j.jtcvs.2010.10.040  

12.   Maesen B., Nijs J., Maessen J., et al. Post-operative atrial fibrillation: a maze of mechanisms. Europace. 2012; 14 (2):  159–74. DOI: https://doi.org/10.1093/europace/eur208  

13.   Bockeria O.L., Akhobekov A.A. The efficiency of statins in the prevention of atrial fibrillation after cardiac operations. Annaly aritmologii [Annals of Arhythmology]. 2014; 11 (1): 14–23. DOI: https://doi.org/10.15275/annaritmol.2014.1.2   (in Russian)

14.   Aranki S.F., Shaw D.P., Adams D.H., et al. Predictors of atrial fibrillation after coronary artery surgery. Current trends and impact on hospital resources. Circulation. 1996; 94: 39–70. DOI: https://doi.org/10.1161/01.CIR.94.3.390  

15.   Guang-Ran Guo, Liang Chen, Man Rao, Kai Chen, Jiang-Ping Song, Sheng-Shou Hu. A modified method for isolation of human cardiomyocytes to model cardiac diseases. J Transl  Med. 2018; 16: 288. DOI: https://doi.org/10.1186/s12967-018-1649-6  

16.   Shumakov D.V., Agladze K.I., Zybin D.I., Popov M.A., Frolova Sh.R., Romanova S.G. A method for isolating cardiomyocytes from human heart tissue. Patent for invention 2749986 C1, 06/21/2021. Application No. 2020138993 dated 11/27/2020. (in Russian)

17.   Cohn J.N. Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation. 1995; 91 (10): 2504–7. DOI: https://doi.org/10.1161/01.CIR.91.10.2504  

18.   St John Sutton M., Pfeffer M.A., Moye L., Plappert T., Rouleau J.L., Lamas G., et al. Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation. 1997; 96 (10): 3294–9. DOI: https://doi.org/10.1161/01.cir.96.10.3294  

19.   Gaudron P., Eilles C., Kugler I., Ertl G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation. 1993; 87 (3): 755–63. DOI: https://doi.org/10.1161/01.CIR.87.3.755

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»