To the content
1 . 2023

Gene therapy of cardiomyopathies: opportunities and current perspectives

Abstract

Non-ischemic (primary) cardiomyopathies (CMP) are a large group of genetically determined diseases manifested by functional and anatomical remodeling of the heart muscle in the absence of obvious external causes. CMP are recognized as the most common hereditary heart disease with a total prevalence 0.5% worldwide.

The natural course of all primary cardiomyopathies is steadily progressive leading to heart failure (HF). Currently available treatment of primary CMP is mainly symptomatic and helps to control various symptoms but does not lead to a complete cure. Etiological approach for the treatment of inherited CMP focused on genetic defect correction, is the priority task of the modern medicine. In this paper, we discuss the main achievements in the gene therapy for primary myocardial dysfunction that have already been introduced or are close to entering the real clinical practice.

Keywords:non-ischemic cardiomyopathies; gene therapy; genome editing; RNA interference; antisense oligonucleotide; adenovirus-associated vectors; exon skipping; small interfering RNA; siRNA

Funding. The study was financially supported by the State Budget Project of the Ministry of Science and Higher Education of the Russian Federation for Research Centre for Medical Genetics.
Conflict of interest. The authors declare no conflict of interest.
For citation: Lavrov A.V., Zaklyazminskaya E.V. Gene therapy of cardiomyopathies: opportunities and current perspectives. Clinical and Experimental Surgery. Petrovsky Journal. 2023; 11 (1): 32–46. DOI: https://doi.org/10.33029/2308-1198-2023-11-1-32-46  (in Russian)


References

1.    Hershberger R.E., Givertz M.M., Ho C.Y., Judge D.P., Kantor P.F., McBride K.L., et al.; and ACMG Professional Practice and Guidelines Committee. Genetic evaluation of cardiomyopathy: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018; 20 (9): 899–909. DOI: https://doi.org/10.1038/s41436-018-0039-z

2.    Wilde A.A.M., Semsarian C., Márquez M.F., Shamloo A.S., Ackerman M.J., Ashley E.A., et al.; Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the European Society of Cardiology (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace. 2022; 24 (8): 1307–67. DOI: https://doi.org/10.1093/europace/euac030

3.    McKenna W.J., Maron B.J., Thien G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res. 2017; 121 (7): 722–30. DOI: https://doi.org/10.1161/CIRCRESAHA.117.309711

4.    Zhi-Hua Zhang, Fan-Qi Meng, Xiao-Feng Hou, Zhi-Yong Qian, Yao Wang, Yuan-Hao Qiu, et al. Clinical characteristics and long-term prognosis of ischemic and non-ischemic cardiomyopathy. Indian Heart J. 2020; 72 (2): 93–100. DOI: https://doi.org/10.1016/j.ihj.2020.04.004

5.    Miron A., Lafreniere-Roula M., Steve Fan C.P., Armstrong K.R., Dragulescu A., Papaz T., et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation. 2020; 142 (3): 217–29. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047235

6.    Sisakian H. Cardiomyopathies: Evolution of pathogenesis concepts and potential for new therapies. World J Cardiol. 2014; 6 (6): 478–94. DOI: https://doi.org/10.4330/wjc.v6.i6.478

7.    Salemi V.M.C., Mohty D., Altavila S.L.L., Melo M.D.T., Kalil Filho R., Bocchi E.A. Insights into the classification of cardiomyopathies: Past, present, and future directions. Clinics (Sao Paulo). 2021; 76: e2808. DOI: https://doi.org/10.6061/clinics/2021/e2808

8.    Bowles N.E., Bowles K.R., Towbin J.A. The «final common pathway» hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz. 2000; 25 (3): 168–75. DOI: https://doi.org/10.1007/s000590050003

9.    Authors/Task Force members; Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014; 35 (39): 2733–79. DOI: https://doi.org/10.1093/eurheartj/ehu284

10.  Fourey D., Care M., Siminovitch K.A., Weissler-Snir A., Hindieh W., Chan R.H., et al. Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene-dose effect. Circ Cardiovasc Genet. 2017; 10 (2): e001685. DOI: https://doi.org/10.1161/CIRCGENETICS.116.001685

11.  Ingles J., Doolan A., Chiu C., Seidman J., Seidman C., Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. J Med Genet. 2005; 42 (10): e59. DOI: https://doi.org/10.1136/jmg.2005.033886

12.  Nakajima T., Kaneko Y., Irie T., Takahashi R., Kato T., Iijima T., et al. Compound and digenic heterozygosity in desmosome genes as a cause of arrhythmogenic right ventricular cardiomyopathy in Japanese patients. Circ J. 2012; 76 (3): 737–43. DOI: https://doi.org/10.1253/circj.CJ-11-0927

13.  James C.A., Jongbloed J.D.H., Hershberger R.E., Morales A., Judge D.P., Syrris P., et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework. Circ Genom Precis Med. 2021; 14 (3): e003273. DOI: https://doi.org/10.1161/CIRCGEN.120.003273

14.  Jordan E., Peterson L., Ai T., Asatryan B., Bronicki L., Brown E., et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation. 20211; 144 (1): 7–19. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.053033

15.  Ingles J., Goldstein J., Thaxton C., Caleshu C., Corty E.W., Crowley S.B., et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019; 12 (2): e002460. DOI: https://doi.org/10.1161/CIRCGEN.119.002460

16.  Robinson H.K., Zaklyazminskaya E., Povolotskaya I., Surikova Y., Mallin L., Armstrong C., et al. Biallelic variants in PPP1R13L cause paediatric dilated cardiomyopathy. Clin Genet. 2020; 98 (4): 331–40. DOI: https://doi.org/10.1111/cge.13812

17.  Corrado D., Link M.S., Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017; 376 (1): 61–72. DOI: https://doi.org/10.1056/NEJMra1509267

18.  Peters S. Advances in the diagnostic management of arrhythmogenic right ventricular dysplasia-cardiomyopathy. Int J Cardiol. 2006; 113 (1): 4–11. DOI: https://doi.org/10.1016/j.ijcard.2005.12.015

19.  El Ghannudi S., Nghiem A., Germain P., Jeung M.Y., Gangi A., Roy C. Left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy – a cardiac magnetic resonance imaging study. Clin Med Insights Cardiol. 2015; 8 (suppl 4): 27–36. DOI: https://doi.org/10.4137/CMC.S18770

20.  Zghaib T., Te Riele A.S.J.M., James C.A., Rastegar N., Murray B., Tichnell C., et al. Left ventricular fibro-fatty replacement in arrhythmogenic right ventricular dysplasia/cardiomyopathy: prevalence, patterns, and association with arrhythmias. J Cardiovasc Magn Reson. 2021; 23 (1): 58. DOI: https://doi.org/10.1186/s12968-020-00702-3

21.  McMurray J.J., Pfeffer M.A. Heart failure. Lancet. 2005; 365 (9474): 1877–89. DOI: https://doi.org/10.1016/S0140-6736(05)66621-4

22.  URL: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss

23.  URL: https://clinicaltrials.gov/ct2/results?cond=&term=gene+editing&cntry=&state=&city=&dist=

24.  Venditti C.P. Safety questions for AAV gene therapy. Nat Biotechnol. 20211; 39 (1): 24–6. DOI: https://doi.org/10.1038/s41587-020-00756-9

25.  Santiago-Ortiz J.L., Schaffer D.V. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release. 2016; 240: 287–301. DOI: https://doi.org/10.1016/j.jconrel.2016.01.001

26.  Gordon K., Del Medico A., Sander I., Kumar A., Hamad B. Gene therapies in ophthalmic disease. Nat Rev Drug Discov. 2019; 18 (6): 415–6. DOI: https://doi.org/10.1038/d41573-018-00016-1

27.  Mendell J.R., Al-Zaidy S.A., Rodino-Klapac L.R., Goodspeed K., Gray S.J., Kay C.N., et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther. 2021; 29 (2): 464–88. DOI: https://doi.org/10.1016/j.ymthe.2020.12.007

28.  Miller N. Glybera and the future of gene therapy in the European Union. Nat Rev Drug Discov. 2012; 11 (5): 419. DOI: https://doi.org/10.1038/nrd3572-c1

29.  Nguyen G.N., Everett J.K., Kafle S., Roche A.M., Raymond H.E., Leiby J., et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021; 39 (1): 47–55. DOI: https://doi.org/10.1038/s41587-020-0741-7

30.  Spector L.P., Tiffany M., Ferraro N.M., Abell N.S., Montgomery S.B., Kay M.A. Evaluating the genomic parameters governing rAAV-mediated homologous recombination. Mol Ther. 2021; 29 (3): 1028–46. DOI: https://doi.org/10.1016/j.ymthe.2020.11.025

31.  Mendell J.R., Sahenk Z., Lehman K., Nease C., Lowes L.P., Miller N.F., et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: A nonrandomized controlled trial. JAMA Neurol. 2020; 77 (9): 1122–31. DOI: https://doi.org/10.1001/jamaneurol.2020.1484

32.  URL: https://musculardystrophynews.com/news/fda-gives-dmd-gene-therapy-srp-9001-priority-review/

33.  Wilton-Clark H., Yokota T. Antisense and gene therapy options for Duchenne muscular dystrophy arising from mutations in the N-terminal hotspot. Genes. 2022; 13 (2): 257. DOI: https://doi.org/10.3390/genes13020257

34.  URL: https://www.genengnews.com/topics/genome-editing/gene-therapy/fda-lifts-clinical-hold-on-pfizer-dmd-gene-therapy-linked-to-patient-death/

35.  URL: https://annualmeeting.asgct.org/global/am22/late-breaking-abstract-publication.aspx

36.  Gabisonia K., Recchia F.A. Gene therapy for heart failure: New perspectives. Curr Heart Fail Rep. 2018; 15 (6): 340–9. DOI: https://doi.org/10.1007/s11897-018-0410-z PMID: 30238397; PMCID: PMC6250586.

37.  Zhang H., Zhan Q., Huang B., Wang Y., Wang X. AAV-mediated gene therapy: Advancing cardiovascular disease treatment. Front Cardiovasc Med. 2022; 9: 952755. DOI: https://doi.org/10.3389/fcvm.2022.952755

38.  Cannatà A., Ali H., Sinagra G., Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res. 2020; 126 (10): 1394–414. DOI: https://doi.org/10.1161/CIRCRESAHA.120.315855

39.  Hammond H.K., Penny W.F., Traverse J.H., Henry T.D., Watkins M.W., Yancy C.W., et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure: A randomized clinical trial. JAMA Cardiol. 2016; 1 (2): 163–71. DOI: https://doi.org/10.1001/jamacardio.2016.0008

40.  Abbs S., Bobrow M. Analysis of quantitative PCR for the diagnosis of deletion and duplication carriers in the dystrophin gene. J Med Genet. 1992; 29: 191–6.

41.  Manuvakhova M., Keeling K., Bedwell D. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000; 6 (7): 1044–55. DOI: https://doi.org/10.1017/S1355838200000716

42.  Welch E., Barton E., Zhuo J., et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007; 447: 87–91. DOI: https://doi.org/10.1038/nature05756

43.  He F., Jacobson A. Nonsense-mediated mRNA decay: Degradation of defective transcripts is only part of the story. Annu Rev Genet. 2015; 49: 339–66. DOI: https://doi.org/10.1146/annurev-genet-112414-054639

44.  Siddiqui N., Sonenberg N. Proposing a mechanism of action for ataluren. Proc Natl Acad Sci USA. 2016; 113 (44): 12 353–5. DOI: https://doi.org/10.1073/pnas.1615548113

45.  Konstan M.W., VanDevanter D.R., Rowe S.M., Wilschanski M., Kerem E., Sermet-Gaudelus I., et al; and ACT CF Study Group. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J Cyst Fibros. 2020; 19 (4): 595–601. DOI: https://doi.org/10.1016/j.jcf.2020.01.007

46.  URL: https://www.parentprojectmd.org/ppmd-urges-fda-to-conduct-a-full-review-of-ataluren-translarna/

47.  Campbell C., Barohn R.J., Bertini E., Chabrol B., Comi G.P., Darras B.T., et al.; Clinical Evaluator Training Groups. Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy. J Comp Eff Res. 2020; 9 (14): 973–84. DOI: https://doi.org/10.2217/cer-2020-0095

48.  McDonald C.M., Muntoni F., Penematsa V., Jiang J., Kristensen A., Bibbiani F., et al.; and Study 019 Investigators. Ataluren delays loss of ambulation and respiratory decline in nonsense mutation Duchenne muscular dystrophy patients. J Comp Eff Res. 2022; 11 (3): 139–55.

49.  van Deutekom J.C.T., Bremmer-Bout M., Janson A.A.M., Ginjaar I.B., Baas F., den Dunnen J.T., et al. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet. 2001; 10 (15): 1547–54. DOI: https://doi.org/10.1093/hmg/10.15.1547

50.  Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999; 1489 (1): 141–58. DOI: https://doi.org/10.1016/s0167-4781(99)00150-5

51.  Shirley M. Casimersen: First approval. Drugs. 2021; 81: 875–9. DOI: https://doi.org/10.1007/s40265-021-01512-2

52.  URL: https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation-0 (date of access February 06, 2023).

53.  Syed Y.Y. Eteplirsen: First global approval. Drugs. 2016; 76: 1699–704. DOI: https://doi.org/10.1007/s40265-016-0657-1

54.  Heo Y.A. Golodirsen: First approval. Drugs. 2020; 80: 329–33. DOI: https://doi.org/10.1007/s40265-020-01267-2

55.  Dhillon S. Viltolarsen: First approval. Drugs. 2020; 80 (10): 1027–31. DOI: https://doi.org/10.1007/s40265-020-01339-3

56.  Komaki H., Takeshima Y., Matsumura T., Ozasa S., Funato M., Takeshita E., et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: A phase 1/2 study. Ann Clin Transl Neurol. 2020; 7 (12): 2393–408. DOI: https://doi.org/10.1002/acn3.51235 Epub 2020 Dec 7.

57.  URL: https://musculardystrophynews.com/news/long-term-viltepso-prevents-motor-function-decline-dmd-boys/ (date of access February 06, 2023).

58.  Rapezzi C., Quarta C.C., Obici L., Perfetto F., Longhi S., Salvi F., et al. Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: An Italian perspective. Eur Heart Journal.,2013; 34 (7): 520–8. DOI: https://doi.org/10.1093/eurheartj/ehs123

59.  Chandrashekar P., Desai A.K., Trachtenberg B.H. Targeted treatments of AL and ATTR amyloidosis. Heart Fail Rev. 2022; 27: 1587–603. DOI: https://doi.org/10.1007/s10741-021-10180-z

60.  Benson M.D., Waddington-Cruz M., Berk J.L., Polydefkis M., Dyck P.J., Wang A.K., et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018; 379 (1): 22–31. DOI: https://doi.org/10.1056/NEJMoa1716793

61.  Prakash T.P., Graham M.J., Yu J., Carty R., Low A., Chappell A., et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014; 42 (13): 8796–807. DOI: https://doi.org/10.1093/nar/gku531

62.  Tanowitz M., Hettrick L., Revenko A., Kinberger G.A., Prakash T.P., Seth P.P. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res. 2017; 45 (21): 12 388–400. DOI: https://doi.org/10.1093/nar/gkx960

63.  Viney N.J., Guo S., Tai L.-J., Baker B.F., Aghajan M., Jung S.W., et al. Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Heart Fail. 2021; 8 (1): 652–61. DOI: https://doi.org/10.1002/ehf2.13154

64.  Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391 (6669): 806–11. DOI: https://doi.org/10.1038/35888

65.  Hayashi Y., Jono H. Recent advances in oligonucleotide-based therapy for transthyretin amyloidosis: Clinical impact and future prospects. Biol Pharm Bull. 2018; 41 (12): 1737–44. DOI: https://doi.org/10.1248/bpb.b18-00625

66.  Suhr O.B., Coelho T., Buades J., et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: A phase II multi-dose study. Orphanet J Rare Dis. 2015; 10: 109. DOI: https://doi.org/10.1186/s13023-015-0326-6

67.  Adams D., Gonzalez-Duarte A., O’Riordan W.D., Yang C.C., Ueda M., Kristen A.V., et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018; 379 (1): 11–21. DOI: https://doi.org/10.1056/NEJMoa1716153

68.  URL: https://www.medthority.com/news/2022/10/additional-results-from-the-apollo-b-phase-iii-study-of-patisiran-in-patients-with-attr-amyloidosis-with-cardiomyopathy-are-presented-at-heart-failure-society-of-america-annual-meeting.--alnylan-pharma/

69.  Judge D.P., Kristen A.V., Grogan M., et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther. 2020; 34: 357–70. DOI: https://doi.org/10.1007/s10557-019-06919-4

70.  Ran F., Hsu P., Wright J., et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8: 2281–308. DOI: https://doi.org/10.1038/nprot.2013.143

71.  Kochergin-Nikitsky K.S., Lavrov A.V., Zaklyazminskaya E.V., Smirnikhina S.A. CRISPR/Cas9 mediated knockout of the DES gene alleles with desminopathyrelated heterozygous gain-of-function mutations. Meditsinskaya genetika [Medical Genetics]. 2021; 20 (7): 37–44. (in Russian) [Кочергин-Никитский К.С., Лавров А.В., Заклязьминская Е.В., Смирнихина С.АИспользование CRISPR/Cas9 для нокаута аллелей гена DES, несущих гетерозиготные gain-offunction мутациисвязанные с развитием десминопатии // Медицинская генетика2021. Т. 20, № 7. С. 37–44. DOI: https://elibrary.ru/item.asp?id=46620752]

72.  Gillmore J.D., Gane E., Taubel J., Kao J., Fontana M., Maitland M.L., et al. CRISPR-Cas9 In vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021; 385 (6): 493–502. DOI: https://doi.org/10.1056/NEJMoa2107454 Epub 2021 Jun 26.

73.  URL: https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-highlights-strategic-priorities-and-1 (date of access February 14, 2023).

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»