To the content
3 . 2023

Clinical and neurophysiological results of transcatheter aortic valve implantation

Abstract

Aim – to evaluate the clinical and neurophysiological parameters of patients undergoing transcatheter aortic valve implantation (TAVI).

Material and methods. The present study included 30 patients (26 of them women), according to the inclusion criteria, median age was 75 years. Additionally, to the standard clinical examination, all patients underwent a neurophysiological examination using with the Montreal Cognitive Assessment (MoCA), extended neuropsychological testing, and digital electroencephalography (EEG) 1–2 days before the and at 5–7 days after TAVI.

Results. A balloon-expandable type of transcatheter valve (Sapien XT) was implanted in the aortic position in 10% of cases (n=3), while self-expanding valve (Acurate, EvolutR, Portico) were used in 90% of TAVI patients. Almost all patients (n=29) underwent surgery under local anaesthesia (1 case – general anaesthesia with mechanical ventilation). The duration of the hospital period and the intensive care stay in patients did not exceed 10 and 2 days, respectively. There were no adverse cardiovascular events during the in-hospital period of TAVI. In three cases (10%) during the hospitalization period of TAVI, implantation of a permanent pacemaker was required as a result of the development of significant atrioventricular conduction disorders. Extended neuropsychological testing revealed postoperative cognitive dysfunction (POCD) in 80% of cases (n=24). Deterioration of executive functions was observed in 26 (87%) patients. A combination of decreased executive functions and short-term memory – in 18 (60%). According to EEG data, patients showed signs of cortical dysfunction after TAVI with an increase in theta (4–8 Hz) and low-frequency alpha activity (8–10 Hz) compared with the preoperative level.

Conclusion. Despite the satisfactory clinical outcomes of the TAVI procedure, a high incidence of POCD was revealed with a predominant deterioration in executive functions and short-term memory, as well as manifestations of cortical dysfunction in the form of an increase in slow-wave EEG activity. The obtained data point to the need for further study of the brain functioning under the influence of factors accompanying TAVI and increasing its safety for the cognitive functioning of patients.

Keywords:transcatheter aortic valve implantation; neurophysiological status; postoperative cognitive dysfunction; electroencephalography

Funding. The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of the exploratory research study “Endovascular, hybrid, extracorporeal technologies for the prevention and treatment of heart and vascular pathology in cardiac surgery” No. 0419-2023-0002.

Conflict of interest. The authors declare no conflict of interest.

For citation: Tarasova I.V., Tarasov R.S., Syrova I.D., Sosnina A.S., Kupriyanova D.S., Kolesnikov A.Yu., Trubnikova O.A., Ganyukov V.I. Clinical and neurophysiological outcomes of transcatheter aortic valve implantation. Clinical and Experimental Surgery. Petrovsky Journal. 2023; 11 (3): 57–67. DOI: https://doi.org/10.33029/2308-1198-2023-11-3-57-67  (in Russian)

References

1.     Salichkin D.V., Imaev T.E., Komlev A.E., Lepilin P.M., Kolegaev A.S., Makeev M.I., et alTranscatheter implantation of ballon-expandable valves with ballon underexpansion in patients with borderline aortic valve annulus. Clinical and Experimental Surgery. Petrovsky Journal. 2020; 8 (2): 17–24. DOI: https://doi.org/10.33029/2308-1198-2020-8-2-17-24  (in Russian)

2.     Holmes D.R. Jr, Nishimura R.A., Grover F.L., Brindis R.G., Carroll J.D., Edwards F.H., et al.; STS/ACC TVT Registry. Annual outcomes with transcatheter valve therapy: from the STS/ACC TVT Registry. Ann Thorac Surg. 2016; 101 (2): 789–800. DOI: https://doi.org/10.1016/j.athoracsur.2015.10.049  

3.     Ganyukov V.I., Tarasov R.S., Vereshchagin I.E., Kochergin N.A., Stasev A.N., Nagirnyak O.A., et al. Transcatheter aortic valve implantation and open aortic surgery: comparative assessment of results. Evraziyskiy kardiologicheskiy zhurnal [Eurasian Heart Journal]. 2018; (4): 4–18. (in Russian)

4.     Sharma T., Krishnan A.M., Lahoud R., Polomsky M., Dauerman H.L. National trends in TAVR and SAVR for patients with severe isolated aortic stenosis. J Am Coll Cardiol. 2022; 80 (21): 2054–6. DOI: https://doi.org/10.1016/j.jacc.2022.08.787  

5.     Gasior T., Mangner N., Bijoch J., Wojakowski W. Cerebral embolic protection systems for transcatheter aortic valve replacement. J Interv Cardiol. 2018; 31 (6): 891–8. DOI: https://doi.org/10.1111/joic.12573  

6.     De Carlo M., Liga R., Migaleddu G., Scatturin M., Spaccarotella C., Fiorina C., et al. Evolution, predictors, and neurocognitive effects of silent cerebral embolism during transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2020; 13 (11): 1291–300. DOI: https://doi.org/10.1016/j.jcin.2020.03.004  

7.     Riley K.J., Kao L.W., Low Y.H., Card S., Manalo G., Fleming J.P., et al. Neurologic dysfunction and neuroprotection in transcatheter aortic valve implantation. J Cardiothorac Vasc Anesth. 2022; 36 (8 pt B): 3224–36. DOI: https://doi.org/10.1053/j.jvca.2021.11.016  

8.     Takagi K., Naganuma T., Tada N., Yamanaka F., Araki M., Shirai S., et al. The predictors of peri-procedural and sub-acute cerebrovascular events following TAVR from OCEAN-TAVI Registry. Cardiovasc Revasc Med. 2020; 21 (6): 732–8. DOI: https://doi.org/10.1016/j.carrev.2019.10.013  

9.     Monnin C., Besutti M., Ecarnot F., Guillon B., Chatot M., Chopard R., et al. Prevalence and severity of cognitive dysfunction in patients referred for transcatheter aortic valve implantation (TAVI): clinical and cognitive impact at 1 year. Aging Clin Exp Res. 2022; 34 (8): 1873–83. DOI: https://doi.org/10.1007/s40520-022-02102-2  

10. Mentias A., Saad M., Menon V., Reed G.W., Popovic Z., Johnston D., et al. Transcatheter vs surgical aortic valve replacement in pure native aortic regurgitation. Ann Thorac Surg. 2023; 115 (4): 870–6. DOI: https://doi.org/10.1016/j.athoracsur.2022.09.016  

11. Bhushan S., Li Y., Huang X., Cheng H., Gao K., Xiao Z. Progress of research in postoperative cognitive dysfunction in cardiac surgery patients: a review article. Int J Surg. 2021; 95: 106163. DOI: https://doi.org/10.1016/j.ijsu.2021.106163  

12. Tarasova I.V., Trubnikova O.А., Barbarash O.L., Barbarash L.S. Diagnostic value of electroencephalographic parameters in patients with early postoperative cognitive dysfunction after coronary artery bypass grafting. Kreativnaya kardiologiya [Creative Cardiology]. 2016; 10 (3): 220–30. DOI: https://doi.org/10.15275/kreatkard.2016.03.04  (in Russian)

13. Tarasova I.V., Tarasov R.S., Trubnikova O.A., Ganyukov V.I. The methodological approach to the assessment of the neurophysiological status in patients with transcatheter aortic valve implantation. Kompleksnye problemy serdechno-sosudistykh zabolevaniy [Complex Problems of Cardiovascular Diseases]. 2022; 11 (2): 6–17. DOI: https://doi.org/10.17802/2306-1278-2022-11-2-6-16  (in Russian)

14. Greaves D., Psaltis P.J., Ross T.J., Davis D., Smith A.E., Boord M.S., et al. Cognitive outcomes following coronary artery bypass grafting: a systematic review and meta-analysis of 91,829 patients. Int J Cardiol. 2019; 289: 43–9. DOI: https://doi.org/10.1016/j.ijcard.2019.04.065   

15. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2022; 27 (7): 371–434.  DOI: https://doi.org/10.15829/1560-4071-2022-5160  (in Russian)

16. Mack M.J., Leon M.B., Thourani V.H., Makkar R., Kodali S.K., Russo M., et al.; PARTNER 3 Investigators. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019; 380 (18): 1695–705. DOI: https://doi.org/10.1056/NEJMoa1814052  

17. Protopopov A.V., Ganyukov V.I., Tarasov R.S. Transcatheter interventions for heart valve disease Krasnoyarsk: Verso, 2021: 528 p. ISBN 978-5-94285-214-6. (in Russian)

18. Harris A.W., Pibarot P., Otto C.M. Aortic stenosis: guidelines and evidence gaps. Cardiol Clin. 2020; 38 (1): 55–63. DOI: https://doi.org/10.1016/j.ccl.2019.09.00   

19. Sammour Y., Krishnaswamy A., Kumar A., Puri R., Tarakji K.G., Bazarbashi N., et al. Incidence, predictors, and implications of permanent pacemaker requirement after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2021; 14 (2): 115–34. DOI: https://doi.org/10.1016/j.jcin.2020.09.063  

20. Sosnina A.S., Tarasova I.V., Kupriyanova D.S., Trubnikova O.А., Kukhareva I.N., Syrova I.D., et al. Gender characteristics of postoperative cognitive dysfunction in patients undergoing coronary artery bypass grafting. Kardiologiya v Belarusi [Cardiology in Belarus]. 2022; 14 (6): 720–8. DOI: https://doi.org/10.34883/PI.2022.14.6.002  (in Russian)

21. Gu S., Coakley D., Chan D., Beska B., Singh F., Edwards R., et al. Does transcatheter aortic valve implantation for aortic stenosis impact on cognitive function? Cardiol Rev. 2020; 28 (3): 135–9. DOI: https://doi.org/10.1097/CRD.0000000000000279  

22. Gross A.L., Chu N., Anderson L., Glymour M.M., Jones R.N.; Coalition Against Major Diseases. Do people with Alzheimer’s disease improve with repeated testing? Unpacking the role of content and context in retest effects. Age Ageing. 2018; 47 (6): 866–71. DOI: https://doi.org/10.1093/ageing/afy136  

23. Silbert B.S., Maruff P., Evered L.A., Scott D.A., Kalpokas M., Martin K.J., et al. Detection of cognitive decline after coronary surgery: a comparison of computerized and conventional tests. Br J Anaesth. 2004; 92 (6): 814–20. DOI: https://doi.org/10.1093/bja/aeh157  

24. Tarasova I.V., Trubnikova O.A., Kukhareva I.N., Barbarash O.L. Methodological approaches to the diagnosis of postoperative cognitive dysfunction in cardiac surgery clinic. Kompleksnye problemy serdechno-sosudistykh zabolevaniy [Complex Problems of Cardiovascular Diseases]. 2015; (4): 73–8. DOI: https://doi.org/10.17802/2306-1278-2015-4-73-78  (in Russian)

25. Abawi M., de Vries R., Stella P.R., Agostoni P., Boelens D.H.M., van Jaarsveld R.C., et al. Evaluation of cognitive function following transcatheter aortic valve replacement. Heart Lung Circ. 2018; 27 (12): 1454–61. DOI: https://doi.org/10.1016/j.hlc.2017.10.006  

26. Sheorajpanday R.V., Mariën P., Nagels G., Weeren A.J., Saerens J., van Putten M.J., et al. Subcortical vascular cognitive impairment, no dementia: EEG global power independently predicts vascular impairment and brain symmetry index reflects severity of cognitive decline. J Clin Neurophysiol. 2014; 31 (5): 422–8. DOI: https://doi.org/10.1097/WNP.0000000000000060  

27. Zappasodi F., Pasqualetti P., Rossini P.M., Tecchio F. Acute phase neuronal activity for the prognosis of stroke recovery. Neural Plast. 2019; 2019: 1971875. DOI: https://doi.org/10.1155/2019/1971875  

28. Tarasova I.V., Trubnikova O.A., Razumnikova O.M. Plasticity of brain functional systems as a compensator resource in normal and pathological aging associated with atherosclerosis. Ateroskleroz [Atherosclerosis]. 2020; 16 (1): 59–67. DOI: https://doi.org/10.15372/ATER20200108  (in Russian)

29. Kalaria R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology. 2018; 134 (pt B): 226–39. DOI: https://doi.org/10.1016/j.neuropharm.2017.12.030  

30. Ghezzi E.S., Ross T.J., Davis D., Psaltis P.J., Loetscher T., Keage H.A.D. Meta-analysis of prevalence and risk factors for cognitive decline and improvement after transcatheter aortic valve implantation. Am J Cardiol. 2020; 127: 105–12. DOI: https://doi.org/10.1016/j.amjcard.2020.04.023  

31. Bowden T., Hurt C.S., Sanders J., Aitken L.M. Predictors of cognitive dysfunction after cardiac surgery: a systematic review. Eur J Cardiovasc Nurs. 2022; 21 (3): 192–204. DOI: https://doi.org/10.1093/eurjcn/zvab086  

32. Mano Y., Mistry P., Tran K., Wright B., Malekyan C., Gurvich T., et al. Cognitive status predicts preoperative instruction compliance. Front Aging Neurosci. 2023; 15: 1081213. DOI: https://doi.org/10.3389/fnagi.2023.1081213

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»