To the content
4 . 2023

Genetic evaluation of the patients with colorectal cancer: rare variations and their role in the family follow-up program

Abstract

According to WHO, colorectal cancer (CRC) is the third most common cancer worldwide and is the second leading cause of cancer-related deaths worldwide. Approximately 75% of patients with diagnosed CRC have sporadic disease without concrete evidence of inheritance. Only 2–6% of all cases of CRC are caused by mutations in well-studied CRC-associated genes. But there are known cases of CRC in patients who are carriers of high-risk alleles in other oncogenes. Course, prognosis and effectiveness of treatment is not entirely dependent on genetic predisposition but also genetic and molecular characteristics of the tumor. Collective data of both germline and somatic genomes are the essentials in development of a comprehensive program of treatment, follow-up and family screening. In this work we present first germline and somatic whole exome sequencing (WES) results of the pilot study on a group of 20 patients operated of colorectal cancer. Two families with identified carriers of high-risk alleles in BRCA1 or CHEK2 plus BRIP1 genes respectively were used as an example of a new strategy for dynamic observation.

Keywords:colorectal cancer; metastatic colorectal cancer; hereditary cancer syndromes; CRC; mCRC; BRCA1/2; BRAF; CHEK2; BRIP1; whole exome sequencing (WES)

Funding. The work was carried out within the framework of state funding for research work “Application of circulating tumor DNA in evaluation of surgical and drug treatment effectiveness in patients with colorectal cancer” (0394-2021-0011).

Conflict of interest. The authors declare no conflict of interest.

For citation: Islanov I.O., Petrenko К.N., Levchenko E.N., Zaklyazminskaya E.V., Bedjanyan A.L. Genetic evaluation of the patients with colorectal cancer: rare variations and their role in the family follow-up program. Clinical and Experimental Surgery. Petrovsky Journal. 2023; 11 (4): 39–47. DOI: https://doi.org/10.33029/2308-1198-2023-11-4-39-47 (in Russian)

References

1.     Colorectal cancer [Electronic resource]. World Health Organization, 2023. URL: https://www.who.int/ru/news-room/fact-sheets/detail/colorectal-cancer  (date of access October 06, 2023).

2.     Medina Pabón M.A., Babiker H.M. A review of hereditary colorectal cancers [Updated 2022 Sep 26]. In: StatPearls [Electronic resources]. Treasure Island, FL: StatPearls Publishing, 2023. URL: https://www.ncbi.nlm.nih.gov/books/NBK538195/  (date of access October 06, 2023).

3.     Kanth P., Grimmett J., Champine M., Burt R., Samadder N.J. Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol. 2017; 112 (10): 1509–25. DOI: https://doi.org/10.1038/ajg.2017.212

4.     Ojha S.K., Laslett N. Hereditary nonpolyposis colon cancer [Updated 2023 Jul 16]. In: StatPearls [Electronic resources]. Treasure Island, FL: StatPearls Publishing, 2023. URL: https://www.ncbi.nlm.nih.gov/books/NBK564511/

5.     Rebuzzi F., Ulivi P., Tedaldi G. Genetic predisposition to colorectal cancer: how many and which genes to test? Int J Mol Sci. 2023; 24 (3): 2137. DOI: https://doi.org/10.3390/ijms24032137

6.     Valle L. Genetic predisposition to colorectal cancer: where we stand and future perspectives. World J Gastroenterol. 2014; 20 (29): 9828–49. DOI: https://doi.org/10.3748/wjg.v20.i29.9828

7.     Jasperson K.W., Tuohy T.M., Neklason D.W., Burt R.W. Hereditary and familial colon cancer. Gastroenterology. 2010; 138 (6): 2044–58. DOI: https://doi.org/10.1053/j.gastro.2010.01.054

8.     Wei C., Peng B., Han Y., et al. Mutations of HNRNPA0 and WIF1 predispose members of a large family to multiple cancers. Fam Cancer. 2015; 14 (2): 297–306. DOI: https://doi.org/10.1007/s10689-014-9758-8

9.     Gysin S., Salt M., Young A., McCormick F. Therapeutic strategies for targeting ras proteins. Genes Cancer. 2011; 2 (3): 359–72. DOI: https://doi.org/10.1177/1947601911412376

10. Hampel H., Frankel W.L., Martin E., et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005; 352 (18): 1851–60. DOI: https://doi.org/10.1056/NEJMoa043146

11. Ligtenberg M.J., Kuiper R.P., Chan T.L., et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet. 2009; 41 (1): 112–7. DOI: https://doi.org/10.1038/ng.283

12. Cohen R., Pudlarz T., Delattre J.F., Colle R., André T. Molecular targets for the treatment of metastatic colorectal cancer. Cancers (Basel). 2020; 12 (9): 2350. DOI: https://doi.org/10.3390/cancers12092350

13. Guinney J., Dienstmann R., Wang X., et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015; 21 (11): 1350–6. DOI: https://doi.org/10.1038/nm.3967

14. Khaliq A.M., Erdogan C., Kurt Z., et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 2022; 23 (1): 113. DOI: https://doi.org/10.1186/s13059-022-02677-z

15. Douillard J.Y., Oliner K.S., Siena S., et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013; 369 (11): 1023–34. DOI: https://doi.org/10.1056/NEJMoa1305275

16. Van Cutsem E., Köhne C.H., Láng I., et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011; 29 (15): 2011–19. DOI: https://doi.org/10.1200/JCO.2010.33.5091

17. Peeters M., Price T.J., Cervantes A., et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010; 28 (31): 4706–13. DOI: https://doi.org/10.1200/JCO.2009.27.6055

18.     Maughan T.S., Adams R.A., Smith C.G., et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011; 377 (9783): 2103–14. DOI: https://doi.org/10.1016/S0140-6736(11)60613-2

19.     Tveit K.M., Guren T., Glimelius B., et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol. 2012; 30 (15): 1755–62. DOI: https://doi.org/10.1200/JCO.2011.38.0915

20.     Davies H., Bignell G.R., Cox C., et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417 (6892): 949–54. DOI: https://doi.org/10.1038/nature00766

21.     Tie J., Gibbs P., Lipton L., et al. Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int J Cancer. 2011; 128 (9): 2075–84. DOI: https://doi.org/10.1002/ijc.25555

22.     Samowitz W.S., Sweeney C., Herrick J., et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005; 65 (14): 6063–9. DOI: https://doi.org/10.1158/0008-5472.CAN-05-0404

23.     Yokota T., Ura T., Shibata N., et al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br J Cancer. 2011; 104 (5): 856–62. DOI: https://doi.org/10.1038/bjc.2011.19

24.     Price T.J., Hardingham J.E., Lee C.K., et al. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol. 2011; 29 (19): 2675–82. DOI: https://doi.org/10.1200/JCO.2010.34.5520

25.     Morris V., Overman M.J., Jiang Z.Q., et al. Progression-free survival remains poor over sequential lines of systemic therapy in patients with BRAF-mutated colorectal cancer. Clin Colorectal Cancer. 2014; 13 (3): 164–71. DOI: https://doi.org/10.1016/j.clcc.2014.06.001

26.     Tran B., Kopetz S., Tie J., et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011; 117 (20): 4623–32. DOI: https://doi.org/10.1002/cncr.26086

27. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487 (7407): 330–7. Epub 2012 Jul 18. DOI: https://doi.org/10.1038/nature11252

28. Benson A.B., Venook A.P., Al-Hawary M.M., et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021; 19 (3): 329–59. DOI: https://doi.org/10.6004/jnccn.2021.0012

29. Maccaroni E., Giampieri R., Lenci E., Scortichini L., Bianchi F., Belvederesi L., et al. BRCA mutations and gastrointestinal cancers: when to expect the unexpected? World J Clin Oncol. 2021; 12 (7): 565–80. DOI: https://doi.org/10.5306/wjco.v12.i7.565   

30. Wan N., Weinberg D., Liu T.Y., et al. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer. 2019; 19 (1): 832. DOI: https://doi.org/10.1186/s12885-019-6003-8

31. Kim S.-T., Raymond V.M., Park J.O., Zotenko E., Park Y.S., Schultz M., et al. Combined genomic and epigenomic assessment of cell-free circulating tumor DNA (ctDNA) improves assay sensitivity in early-stage colorectal cancer (CRC). Cancer Res. 2019; 79: 916. DOI: https://doi.org/10.1158/1538-7445.AM2019-916

32. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, version 2). Meditsinskaya genetika [Medical Genetics]. 2019; 18 (2): 3–24. DOI: https://doi.org/10.25557/2073-7998.2019.02.3-23  (in Russian)

33. Richards S., Aziz N., Bale S., Bick D., Das S., GastierFoster J., et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17 (5): 405–24. DOI: https://doi.org/10.1038/gim.2015.30

34. Li M.M., Datto M., Duncavage E.J., et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017; 19 (1): 4–23. DOI: https://doi.org/10.1016/j.jmoldx.2016.10.002

35. Tabernero J., Ros J., Élez E. The evolving treatment landscape in BRAF-V600E-mutated metastatic colorectal cancer. Am Soc Clin Oncol Educ Book. 2022; 42: 1–10. DOI: https://doi.org/10.1200/EDBK_349561

36. Guerrero R.M., Labajos V.A., Ballena S.L., et al. Targeting BRAF V600E in metastatic colorectal cancer: where are we today? Ecancermedicalscience. 2022; 16: 1489. DOI: https://doi.org/10.3332/ecancer.2022.1489

37. Tian J., Chen J.H., Chao S.X., et al. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: a phase 2 trial. Nat Med. 2023; 29: 458–66. DOI: https://doi.org/10.1038/s41591-022-02181-8

38. Gu L., Li M., Li C.M., et al. Small molecule targeting of transcription-replication conflict for selective chemotherapy. Cell Chem Biol. 2023; 30 (10): 1235–47.e6. DOI: https://doi.org/10.1016/j.chembiol.2023.07.001

39. Gu L., Lingeman R., Yakushijin F., et al. The anticancer activity of a first-in-class small-molecule targeting PCNA. Clin Cancer Res. 2018; 24 (23): 6053–65. DOI: https://doi.org/10.1158/1078-0432.CCR-18-0592

40. BRCA Gene Mutations: Cancer Risk and Genetic Testing [Electronic resource]. National Cancer Institute. URL: https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet  (date of access October 09, 2023).

41. Oh M., McBride A., Yun S., Bhattacharjee S., Slack M., Martin J.R., et al. BRCA1 and BRCA2 gene mutations and colorectal cancer risk: systematic review and meta-analysis. J Natl Cancer Inst. 2018; 110 (11): 1178–89. DOI: https://doi.org/10.1093/jnci/djy148

42. Li S., Silvestri V., Leslie G., et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. J Clin Oncol. 2022; 40 (14): 1529–41. DOI: https://doi.org/10.1200/JCO.21.02112

43. Ibrahim M., Yadav S., Ogunleye F., Zakalik D. Male BRCA mutation carriers: clinical characteristics and cancer spectrum. BMC Cancer. 2018; 18 (1): 179. DOI: https://doi.org/10.1186/s12885-018-4098-y

44. AlDubayan S.H., Giannakis M., Moore N.D., et al. Inherited DNA-repair defects in colorectal cancer. Am J Hum Genet. 2018; 102 (3): 401–14. DOI: https://doi.org/10.1016/j.ajhg.2018.01.018

45. Lv M.Y., Wang W., Zhong M.E., et al. DNA repair-related gene signature in predicting prognosis of colorectal cancer patients. Front Genet. 2022; 13: 872238. DOI: https://doi.org/10.3389/fgene.2022.872238

46. Pham M.M., Hinchcliff E., Avila M., Westin S.N. The clinical challenges, trials, and errors of combatting poly (ADP-Ribose) polymerase inhibitors resistance. Cancer J. 2021; 27 (6): 491–500. DOI: https://doi.org/10.1097/PPO.0000000000000562

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»