To the content
4 . 2023

The role of gas microembolism from the heart-lung machine in microembolization of cerebral blood flow during reconstructive operations on the aorta

Abstract

According to the majority of the  most authors one of the main causes of neurological complications after operations performed under EC conditions is cerebral gas embolism with subsequent impairment of cerebral perfusion and damage to the nervous tissue.

Aim. To evaluate the dynamics of the microembolic signal in the middle cerebral arteries and gas microembolism from the heart-lung machine and determine the correlation between these indicators.

Material and methods. The study included 49 patients operated on for aortic dissection and aneurysm. Exclusion criteria were a history of acute cerebrovascular accident, traumatic brain injury and cognitive impairment, and lack of access to both middle cerebral arteries for insonation through the temporal fenestrae.

Results. Spearman’s rank correlation coefficient between the number of registered gas microemboli in the arterial line of the heart-lung machine and the number of microembolic signals of gas origin was 0.767 (p<0.05).

Conclusion. The amount of microembolic signal of gas origin in the middle cerebral arteries has a direct correlation with the volume of gas microembolism from the heart-lung machine.

Keywords:gas microembolism; artificial circulation; extracorporeal circuit; circulatory arrest; antegrade cerebral perfusion; microembolic signal; transcranial Doppler sonography

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Panov A.V., Lokshin L.S., Gubko A.V. The role of gas microembolism from the heart-lung machine in microembolization of cerebral blood flow during reconstructive operations on the aorta. Clinical and Experimental Surgery. Petrovsky Journal. 2023; 11 (4): 116–20. DOI: https://doi.org/10.33029/2308-1198-2023-11-4-116-120  (in Russian)

References

1.     Bockeria L.A., Golukhova E.Z., Vanichkin A.V., Polunina A.G., Lefterova N.P., Kazanovskaya S.N. Echocardiographic correlates of cognitive dysfunction after cardiac surgery. Kreativnaya kardiologiya [Creative Cardiology]. 2015; (4): 13–25. DOI: https://doi.org/10.15275/kreatkard.2015.04.02  (in Russian)

2.     Petrova M.M., Prokopenko S.V., Eremina O.V., Mozheyko E.Yu., Kaskaeva D.S., Gankin M.I. The state of cerebral blood flow and cognitive functions in patients with coronary heart disease who have undergone coronary bypass surgery. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2017; (3): 77–84. DOI: https://doi.org/10.15829/1560-4071-2017-3-77-84  (in Russian)

3.     Stehouwer M.C., de Vroege R., Bruggemans E.F., Hofman F.N., Molenaar M.A., van Oeveren W., et al. The influence of gaseous microemboli on various biomarkers after minimized cardiopulmonary bypass. Perfusion. 2020; 35 (3): 202–8. DOI: https://doi.org/0.1177/0267659119867572  

4.     Toomasian C.J. The effect of air exposure on leucocyte and cytokine activation in an in-vitro model of cardiotomy suction. Perfusion. 2018; 33: 538–45. DOI: https://doi.org/10.1177/s00401-010-0674-1

5.     Reis E.E., Menezes L.D., Justo C.C.L. Gaseous microemboli in cardiac surgery with cardiopulmonary bypass. Rev Bras Cir Cardiovasc. 2012; 27 (3): 436–45. DOI: https://doi.org/10.5935/1678-9741.20120073

6.     Tingleff J., Joyce F.S., Pettersson G. Intraoperative echocardiographic study of air embolism during cardiac operations. Ann Thorac Surg. 1995; 60: 673–7. DOI: https://doi.org/10.1016/0003-4975(95)00577-8

7.     Guerrieri Wolf L., Abu-Omar Y., Choudhary B.P., Pigott D., Taggart D.P. Gaseous and solid cerebral microembolization during proximal aortic anastomoses in off-pump coronary surgery: the effect of an aortic side-biting clamp and two clampless devices. J Thorac Cardiovasc Surg. 2007; 133: 485–93. DOI: https://doi.org/10.1016/j.jtcvs.2006.10.002

8.     Lou S., Liu J., Long C. Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure. Int J Artif Organs. 2011; 34 (11): 1039–51. DOI: https://doi.org/10.5301/ijao.5000010

9.     Ivkin A.A., Grigor’ev E.V., Shukevich D.L. The role of artificial circulation in the development of postoperative cognitive dysfunction. Kardiologiya i serdechno-sosudistaya khirurgiya [Cardiology and Cardiovascular Surgery]. 2021; (2): 168–74. DOI: https://doi.org/10.17116/kardio2021114021168  (in Russian)

10. Sandrikov V.A., Sadovnikov V.I., Fedulova S.V., Aliev S.M. Monitoring of microembolic signals in cerebral vessels in the early postoperative period in cardiac surgery patients. Ul’trazvukovaya i funktsional’naya diagnostika [Ultrasound and Functional Diagnostics]. 2010; (5): 54–63. (in Russian)

11. Golukhova E.Z., Polunina A.G., Zhuravleva S.V., Begachev A.V., Lefterova N.P., Breskina N.Yu. Microembolization of cerebral blood flow during operations with artificial circulation: intraoperative, hemorheological and echocardiographic correlates. Annaly khirurgii [Annals of Surgery]. 2009; (6): 79–87. (in Russian)

12. Sandrikov V.A., Dutikova E.F., Fedulova S.V. Ultrasound transcranial monitoring during coronary artery bypass grafting under conditions of artificial circulation. Anesteziologiya i reanimatologiya [Anesthesiology and Resuscitation]. 2007; (5): 58–61. (in Russian)

13. Golukhova E.Z., Bockeria L.A., Polunina A.G., et al. Enlarged heart size and postoperative heart functioning are associated with intraoperative microembolic load in cardiac surgery patients: ESC Congress 2009, Barselona. Eur Heart J. 2009; 30: 141.

14. Miyazaki S., Yoshitani K., Miura N. Risk factors of stroke and delirium after off-pump coronary artery bypass surgery. Interact Cardiovasc Thorac Surg. 2011; 12 (3): 379–83. DOI: https://doi.org/10.1510/icvts.2010.248872

15. Nishiyama K., Horiguchi M., Shizuta S., et al. Temporal pattern of strokes after on-pump and off-pump coronary artery bypass graft surgery. Ann Thorac Surg. 2009; 87: 1839–44. DOI: https://doi.org/10.1016/j.athoracsur.2009.02.061

16. Rodriguez R., Ruel M., Labrosse M. Transcranial Doppler and acoustic pressure fluctuations for the assessment of cavitation and thromboembolism in patients with mechanical heart valves. Interact Cardiovasc Thorac Surg. 2008; 7 (2): 179–83. DOI: https://doi.org/10.1510/icvts.2007.167569

17. Tagarakis G., Karangelis D., Tsolaki F. Embolism as major cause of neurocognitive complications after heart surgery. Interact Cardiovasc Thorac Surg. 2011; 12 (3): 383. DOI: https://doi.org/10.1510/icvts.2010.248872

18. Lokshin L.S. Gas microembolism during artificial circulation. Anesteziologiya i reanimatologiya [Anesthesiology and Resuscitation]. 2015; 60 (5): 17–20. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»