To the content
1 . 2024

Histological and molecular analysis of the left ventricular aneurysm wall

Abstract

Hibernating myocardium, potentially capable of restoring its function, is of clinical and scientific interest. Histological and molecular analysis of the hibernating myocardium in the zones of hypokinesis and normokinesis in a patient with ischemic heart disease was performed.

Material and methods. A molecular and immunohistochemical study of left ventricular myocardial biopsies was performed in a patient after surgical reconstruction of the left ventricle in combination with surgical revascularization.

Results. Morphological examination revealed a violation of the structure of cardiomyocytes, which correlates with the accumulation of matrix metalloproteinase type 9 in the cytoplasm of cardiomyocytes in these zones against the background of partial or complete destruction of their basement membranes formed by type IV collagen.

Analysis of the differential expression of genes encoding extracellular ar matrix proteins and matrix-associated molecules revealed a shift in the transcription profile due to a decrease in the expression of collagen genes, matrix proteases, and cell-matrix interaction molecules.

Conclusion. Based on the analysis, it can be concluded that the hibernating myocardium, as a result of the destruction of the structure of the sarcormers and basal membranes of cardiomyocytes, a decrease in the activity of extracellular matrix genes, is not able to further provide contractile function, and viable cells that are detected during morphological examination probably function only as a protective mechanism during early scar formation.

Keywords:ischemic heart disease; left ventricular aneurysm; left ventricular remodeling; hibernating myocardium; histological analysis; extracellular matrix; differential gene expression; reverse transcription polymerase chain reaction

Funding. The study was supported by the Russian Science Foundation grant No. 23-15-00062, https://rscf.ru/project/23-15-00062

Conflict of interest. The authors declare no conflict of interest.

For citation: Popov M.A., Andreeva E.R., Gurevich L.E., Zybin D.I., Ratushny A.Yu., Matveeva D.K., Abdullaev S.A., Radchenkova O.V., Buravkova L.B., Shumakov D.V. Histological and molecular analysis of the left ventricular aneurysm wall. Clinical and Experimental Surgery. Petrovsky Journal. 2024; 12 (1): 118–26. DOI: https://doi.org/10.33029/2308-1198-2024-12-1-118-126  (in Russian)

References

1.     Mosterd A., Hoes A.W. Clinical epidemiology of heart failure. Heart. 2007; 93 (9): 1137–46. DOI: https://doi.org/10.1136/hrt.2003.025270  PMID: 17699180; PMCID: PMC1955040.

2.     Sahle B.W., Owen A.J., Chin K.L., Reid C.M. Risk prediction models for incident heart failure: a systematic review of methodology and model performance. J Card Fail. 2017; 23 (9): 680–7. DOI: https://doi.org/10.1016/j.cardfail.2017.03.005  Epub 2017 Mar 21. PMID: 28336380.

3.     Jha S.R., Ha H.S., Hickman L.D., Hannu M., Davidson P.M., Macdonald P.S., et al. Frailty in advanced heart failure: a systematic review. Heart Fail Rev. 2015; 20 (5): 553–60. DOI: https://doi.org/10.1007/s10741-015-9493-8  PMID: 25982016.

4.     Ferraris V.A. Commentary: recovering ischemic myocardiumhibernation, autophagy, preconditioning, mitochondria, stem cells, and more. J Thorac Cardiovasc Surg. 2021; 162 (1): e17–8. DOI: https://doi.org/10.1016/j.jtcvs.2020.01.002  

5.     Benz D.C., von Dahlen A.P., Huang W., Messerli M., von Felten E., Benetos G., et al. No differences in rest myocardial blood flow in stunned and hibernating myocardium: insights into the pathophysiology of ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2019; 46 (11): 2322–8. DOI: https://doi.org/10.1007/s00259-019-04440-2  

6.     Acar E., Aksu A., Akkaya G., Kaya G.Ç. Prevalence and localization of hibernating myocardium among patients with left ventricular dysfunction. Curr Med Imaging Rev. 2019; 15 (9): 884–9. DOI: https://doi.org/10.2174/1573405615666190701110620  

7.     Kloner R.A. Stunned and hibernating myocardium: where are we nearly 4 decades later? J Am Heart Assoc. 2020; 9 (3): e015502. DOI: https://doi.org/10.1161/JAHA.119.015502

8.     Kirklin J.W., Barrat-Boyes B.G. Cardiac Surgery. Vol. 1. Churchill Livingston, 1993: 859 p.

9.     Mitchell G.F., Lamas G.A., Vaughan D.E., Pfeffer M.A. Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol. 1992; 19: 1136–44.

10. Muhlbaier L.H., Pryor D.B., Rankin J.S., Smith L.R., et al. Observational comparison of event-free survival with medical and surgical therapy in patients with coronary artery disease. 20 years of follow-up. Circulation. 1992; 86 (5 suppl): II198–204.

11. Hapira O.M., Davidoff R., Hilkert R.J., Aldea G.S., Fitzgerald C.A., Shemin R.J. Repair of Surgical management of left ventricular aneurysm: long term results of linear repair versus endoaneurysmorhaphy. Ann Thorac Surg. 1997; 63: 697–700.

12. Ingber D.E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997; 59: 575–99. DOI: https://doi.org/10.1146/annurev.physiol.59.1.575  PMID: 9074778.

13. Popov M.A., Shumakov D.V., Gurevich L.E., Fedorov D.N., Zybin D.I., Ashevskaya V.E., et al. The evaluation of hibernating myocardium function. Klinicheskaya i eksperimental’naya morfologiya [Clinical and Experimental Morphology]. 2023; 12 (1): 59–67. DOI: https://doi.org/10.31088/CEM2023.12.1.59-67(in Russian)

14. Imanaka-Yoshida K. Tenascin-C in heart diseases – the role of inflammation. Int J Mol Sci. 2021; 22 (11): 5828. DOI: https://doi.org/10.3390/ijms22115828  PMID: 34072423; PMCID: PMC8198581.

15. Imanaka-Yoshida K., Tawara I., Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol. 2020; 319 (5): C781–96. DOI: https://doi.org/10.1152/ajpcell.00353.2020  Epub 2020 Aug 26. PMID: 32845719.

16. Abbadi D., Laroumanie F., Bizou M., Pozzo J., Daviaud D., Delage C., et al. Local production of tenascin-C acts as a trigger for monocyte/macrophage recruitment that provokes cardiac dysfunction. Cardiovasc Res. 2018; 114 (1): 123–37. DOI: https://doi.org/10.1093/cvr/cvx221  PMID: 29136112.

17. Toba H., de Castro Brás L.E., Baicu C.F., Zile M.R., Lindsey M.L., Bradshaw A.D. Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. Am J Physiol Endocrinol Metab. 2016; 310 (11): E1027–35. DOI: https://doi.org/10.1152/ajpendo.00040.2016  Epub 2016 May 3. PMID: 27143554; PMCID: PMC4935141.

18. Ishiyama N., Lee S.H., Liu S., Li G.Y., Smith M.J., Reichardt L.F., et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell. 2010; 141 (1): 117–28. DOI: https://doi.org/10.1016/j.cell.2010.01.017  PMID: 20371349.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)

Journals of «GEOTAR-Media»