To the content
3 . 2024

Dynamics of the morphofunctional status of the isolated cardiopulmonary complex under conditions of normothermic autoperfusion ex vivo

Abstract

Background. The limited period of safe pharmaco-cold preservation of the donor heart significantly limits the possibilities of remote transplant collection, which leads to organ failure and high mortality of patients on the waiting list. Normothermic autoperfusion as part of the ex vivo cardiopulmonary complex is an alternative method of the heart preservation.

Aim – to evaluate the morphofunctional status of the autoperfused cardiopulmonary complex
in the experiment.

Material and methods. Landrace pigs weighing 50±5 kg and aged 4–5 months (n=10) were used as models for the series of sequential experiments. After hemodynamic isolation, the autoperfused cardiopulmonary complex was explanted and placed in a thermostatic (37 °C) box. During a 6-hour observation, the heart was monitored by measuring hemodynamic parameters, myocardial contractility and blood gases flowing from the coronary sinus.

Results. During the 6-hours conditioning of the cardiopulmonary complex under conditions of normothermic autoperfusion, the hemodynamics and contractile function of the heart were stable. Despite the reduction in flow and pressure in the pulmonary circulation, the parameters of the blood gas composition remain within the reference range. During the experiment, a decreased leukocytes count in the level of leukocytes in the perfusate and moderate leukocyte infiltration of the pulmonary parenchyma were observed.

Conclusion. Despite the fact that normothermic autoperfusion effectively preserves the pumping function of the heart ex vivo for 6 hours, optimal perfusate composition and the choice of perfusion regimen require further research.

Keywords: autoperfusion; heart preservation; normothermic perfusion; reperfusion injury; heart transplantation; pharmaco-cold preservation

Funding. The research was carried out within the framework of project No. 23-25-10013 (Agreement No. 23-25-10013 dated 04/20/2023 with the Russian Science Foundation, Agreement No. r-52 dated 04/03/2023 with the Ministry of Science and Innovation Policy of the Novosibirsk region).

Conflict of interest. The authors declare no conflict of interest.

For citation: Smirnov Yа.M., Zhulkov M.O., Zykov I.S., Sirota D.A., Tarkova A.R., Kliver E.E., Kliver V.E., Volkov A.M., Agaeva K.A., Karmadonova N.A., Surovtseva M.A., Kim I.I., Poveshchenko O.V., Kosimov F.Yu., Murtazaliev M.N., Guseva A.V. Dynamics of the morphofunctional status of the isolated cardiopulmonary complex under conditions of normothermic autoperfusion ex vivo. Clinical and Experimental Surgery. Petrovsky Journal. 2024; 12 (3): 14–22. DOI: https://doi.org/10.33029/2308-1198-2024-12-3-14-22 (in Russian)

References

1.     Rossano J.W., et al. The registry of the international society for heart and lung transplantation: twentieth pediatric heart transplantation report – 2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017; 36 (10): 1060–9. DOI: https://doi.org/10.1016/j.healun.2017.07.018

2.     Fomichev A.V., et al. Mid-term and long-term outcomes following heart transplantation with prolonged cold ischemia. Vestnik transplantologii i iskusstvennykh organov [Bulletin of Transplantology and Artificial Organs]. 2023; 25 (1): 99–105. DOI: https://doi.org/10.15825/1995-1191-2023-1-99-105 (in Russian)

3.     Zhul’kov M.O., et al. Results of a study of the effectiveness of direct coronary oxygen persufflation as a donor heart conditioning method. Vestnik transplantologii i iskusstvennykh organov [Bulletin of Transplantology and Artificial Organs]. 2022; 24 (3): 111–20. DOI: https://doi.org/10.15825/1995-1191-2022-3-111-120 (in Russian)

4.     Banner N.R., et al. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation. 2008; 86 (4): 542–7. DOI: https://doi.org/10.1097/tp.0b013e31818149b9  

5.     John R., et al. Impact of current management practices on early and late death in more than 500 consecutive cardiac transplant recipients. Ann Surg. 2000; 232 (3): 302. DOI: https://doi.org/10.1016/s1053-0770(01)70048-1

6.     Tang P.C., et al. Determining optimal donor heart ischemic times in adult cardiac transplantation. J Card Surg. 2022; 37 (7): 2042–50. DOI: https://doi.org/10.1111/jocs.16558

7.     Zhul’kov M.O., et al. Long-term conditioning of a donor heart by autoperfusion. Vestnik experimental’noy i klinicheskoy khirurgii [Bulletin of Experimental and Clinical Surgery]. 2022; 15 (3): 214–20. DOI: https://doi.org/10.18499/2070-478x-2022-15-3-214-220 (in Russian)

8.     Starling E.H., et al. The regulation of the energy output of the heart. J Physiol. 1927; 62 (3): 243–61. DOI: https://doi.org/10.1113/jphysiol.1927.sp002355

9.     Demikhov V.P. Experimental transplantation of vital organs. Moscow: Medgiz, 1960: 260 p. (in Russian)

10. Robicsek F., et al. The maintenance of function of the donor heart in the extracorporeal stage and during transplantation. Ann Thorac Surg. 1968; 6 (4): 330–42. DOI: https://doi.org/10.1016/s0003-4975(10)66033-x

11. Hardesty R.L., et al. Autoperfusion of the heart and lungs for preservation during distant procurement. J Thorac Cardiovasc Surg. 1987; 93 (1): 11–8. DOI: https://doi.org/10.1016/s0022-5223(19)36469-4

12. Parekh R., et al. A novel noninvasive method to assess left ventricular – dP/dt using diastolic blood pressure and isovolumic relaxation time. Echocardiography. 2013; 30 (3): 267–70. DOI: https://doi.org/10.1111/echo.12042

13. Pahuja M., et al. Overview of the FDA's circulatory system devices panel virtual meeting on the TransMedics Organ Care System (OCS) heart – portable extracorporeal heart perfusion and monitoring system. Am Heart J. 2022; 247: 90–9. DOI: https://doi.org/10.1016/j.ahj.2022.02.003

14. Iyer A., et al. Increasing the tolerance of DCD hearts to warm ischemia by pharmacological postconditioning. Am J Transplant. 2014; 14 (8): 1744–52. DOI: https://doi.org/10.1111/ajt.12782

15. Pinnelas R., et al. Ex vivo normothermic perfusion in heart transplantation: a review of the TransMedics Organ Care System. Future Cardiol. 2022; 18 (1): 5–15. DOI: https://doi.org/10.2217/fca-2021-0030

16. Zhul’kov M.O., et al. Evaluation of the coronary status of an autoperfused donor heart in the experiment. Klinicheskaya i eksperimental’naya khirurgiya. Zhurnal imeni akademika B.V. Petrovskogo [Clinical and Experimental Surgery. The Journal named after Academician B.V. Petrovsky]. 2023; 11 (3): 76–83. DOI: https://doi.org/10.33029/2308-1198-2023-11-3-76-83 (in Russian)

17. Zhul’kov M.O., et al. Current state of the problem and results of ex vivo perfusion of donor hearts. Vestnik transplantologii i iskusstvennykh organov [Bulletin of Transplantology and Artificial Organs]. 2020; 21 (4): 143–6. DOI: https://doi.org/10.15825/1995-1191-2019-4-143-146 (in Russian)

18. Algoet M., et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2023; 33 (6): 357–66. DOI: https://doi.org/10.1016/j.tcm.2022.02.005

19. van Bragt K.A., et al. Dynamic regulation of atrial coronary blood flow in healthy adult pigs. Heart Rhythm. 2015; 12 (5): 991–1000. DOI: https://doi.org/10.1016/j.hrthm.2015.01.016

20. Hatami S., et al. Myocardial functional decline during prolonged ex situ heart perfusion. Ann Thorac Surg. 2019; 108 (2): 499–507. DOI: https://doi.org/10.1016/j.athoracsur.2019.01.076

21. Repse S., et al. Cardiac reanimation for donor heart transplantation after cardiocirculatory death. J Heart Lung Transplant. 2010; 29 (7): 747–55. DOI: https://doi.org/10.1016/j. healun.2010.02.009

22. Kobayashi J., et al. Flow-targeted pediatric ex vivo heart perfusion in donation after circulatory death: a porcine model. J  Heart Lung Transplant. 2020; 39 (3): 267–77. DOI: https://doi.org/10.1016/j.healun.2019.11.023

23. Qi X., et al. The evaluation of constant coronary artery flow versus constant coronary perfusion pressure during normothermic ex situ heart perfusion. J Heart Lung Transplant. 2022; 41 (12): 1738–50. DOI: https://doi.org/10.1016/j.healun.2022.08.009

24. Zhul’kov M.O., et al. Surgical technique for explantation of a functioning cardiopulmonary complex in an experiment. Vestnik transplantologii i iskusstvennykh organov [Bulletin of Transplantology and Artificial Organs]. 2023; 25 (3): 122–8. DOI: https://doi.org/10.15825/1995-1191-2023-3-122-128 (in Russian)

25. Genco C.M., et al. Granulocyte sequestration and early failure in the autoperfused heart-lung preparation. Ann Thorac Surg. 1992; 53 (2): 217–26. DOI: https://doi.org/10.1016/0003-4975(92)91322-z

26. [Physiologic constraints in autoperfused heart-lung preservation] [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/3119801/  (date of access September 03, 2023).

27. Naka Y., et al. Prevention of pulmonary edema developing in autoperfusing heart-lung preparation by leukocyte depletion. Eur J Cardiothorac Surg. 1989; 3 (4): 355–8. DOI: https://doi.org/10.1016/1010-7940(89)90035-3

28. Genco C.M., et al. Leukocyte redistribution and eicosanoid changes during the autoperfused working heart-lung preparation. J Invest Surg. 1991; 4 (4): 477–85. DOI: https://doi.org/10.3109/08941939109141178

29. Matheis G., et al. Leukocyte filtration in cardiac surgery: a review. Perfusion. 2001; 16 (5): 361–70. DOI: https://doi.org/10.1177/026765910101600506

30. [An experimental study of the heart and lung preservation using autoperfusion method – a study for prolonged preservation] [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/2379913/ (date of access September 10, 2023).

31. Martin B.A., et al. Effect of pulmonary blood flow on the exchange between the circulating and marginating pool of polymorphonuclear leukocytes in dog lungs. J Clin Invest. 1982; 69 (6): 1277–85. DOI: https://doi.org/10.1172/jci110567

32. Downey G.P., et al. Neutrophil retention in model capillaries: deformability, geometry, and hydrodynamic forces. J Appl Physiol. 1988; 65 (4): 1861–71. DOI: https://doi.org/10.1152/jappl.1988.65.4.1861

33. Perrault L.P., et al. Impairment of G-protein-mediated signal transduction in the porcine coronary endothelium during rejection after heart transplantation. Cardiovasc Res. 1999; 43 (2): 457–70. DOI: https://doi.org/10.1016/s0008-6363(99)00101-7

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Sergey L. Dzemeshkevich
MD, Professor (Moscow, Russia)
geotar-digit

Journals of «GEOTAR-Media»